这样充分尊重学生的独立思考的过程与结果,鼓励学生想出多种方法计算,在学生汇报交流、反馈、评价中初步感受到转化的数学思想,获得成功的学习体验,之后教师评价:大家能把新的问题转化成已有的经验来解决,这种分析思考的方法很好,你们还能提出类似的问题吗?进而引入进一步的探索当中,教师作出这样的提示,这道题没有元角分,你们能把它也转化成已经学过的乘法算式吗?在学生独立思考计算的基础上,组织小组讨论,给每个学生展示自己思维的机会,教师深入小组收集信息,然后组织全班讨论,揭示算理,得出计算的方法。这一过程要重点突出算理的探索,使学生认识到小数乘法与整数乘法的联系,利用积变化的规律合理解释算理,通过学生亲身经历,主动参与,积极思考,自学交流等活动过程,使学生真正获得数学的知识和学习方法。
除数是整数的小数除法的计算步骤和试商方法与整数除法基本相同。它是在整数除法的基础上进行教学的。又是学生以后学习小数除法的基础,必须沟通小数除法和整数除法的联系,抓住新旧知识的连接点,紧密结合现实情境,展示学生对小数除法计算方法的探究过程,突出计算方法的教学,在掌握计算方法的同时更要理解算理。二.教学目标:1.通过自主探究、合作交流,理解小数除以整数的计算方法。2.正确地进行小数除以整数的计算,并能解决简单的实际问题。3.培养学生比较、分析和归纳等思维能力;以及类比、迁移的学习能力。4.通过学习活动,培养积极的学习态度,树立学好数学的信心。5.让学生感受数学与生活的密切联系,培养学习数学的兴趣。重点难点:正确地进行小数除以整数的计算,并能解决简单的实际问题是本课的重点,本课的难点是理解小数除以整数的计算方法,理解小数点为什么要对齐。
(由除数的小数位决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如:0.756÷0.18=75.6÷18。)(设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)2、学习例5:买0.75千克油用10.5元。每千克油的价格是多少元?学生列式:10.5÷0.75。①要把除数0.75变成整数,怎样转化?(把除数0.75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)②被除数10.5扩大100倍是多少?(10.5扩大100倍是1050,小数部分位数不够在末尾被“0”。)3、比较例4与例5有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)4、练习:课本P21练一练第2题,学生独立完成后,归纳小结。(设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。)
(4)“不论m取何实数,方程x2+2x-m=0都有实数根”是全称量词命题,其否定为“存在实数m0,使得方程x2+2x-m0=0没有实数根”,它是真命题.解题技巧:(含有一个量词的命题的否定方法)(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到其量词的位置及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.跟踪训练三3.写出下列命题的否定,并判断其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一个实数x,使x3+1=0.【答案】见解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命题.
2、在活动中,让幼儿能按教师的要求进行数学操作活动。3、激发幼儿对数学活动的兴趣。活动准备:小鸭子头饰一个;用各种几何图形拼成的小路;五角星。活动过程:一、观看情景表演小鸭子走在回家的路上,一不小心摔了一跤。师:小鸭子你为什么摔跤啊? <请小朋友们帮助它把路铺好。
2.过程与方法 通过研究三角形、四边形的内角和,让学生经历观察、思考、推理、归纳的过程,渗透猜想--验证--结论--运用的学习方法,培养学生动手操作和合作交流的能力,增强学生的主体探究意识。3.情感态度与价值观 培养学生自主学习、积极探索的好习惯,激发学生学习数学、应用数学的兴趣,体验学习数学的快乐。【教学重点】 引导学生发现三角形内角和是180°,并能应用这一知识解决一些简单问题;通过量、拼、算等探究活动,使学生了解任意四边形的内角和都是3600 。【教学难点】 用不同方法验证三角形的内角和是180°;引导学生利用转化的方法把四边形或多边形转化成三角形,发现多边形的边数与内角和之间的关系。【教学方法】启发式教学、自主探索、合作交流、讨论法、讲解法。【课前准备】多媒体、不同类型的三角形各一个、量角器。
2.引导幼儿感受冬天气温的变化,探索水的形态变化与气温的关系。 3.引导幼儿学习动手制作冰花、欣赏冰花,培养幼儿的审美能力。活动准备: 1.矿泉水瓶、清水、细绳、花瓣、树叶、小石头等。 2.温度计若干。活动过程: 1.在天气不是很冷的时候布置幼儿回家制作冰花后,请带来冰花的幼儿讲讲怎样做的冰花,请没带冰花的幼儿讲讲为什么没带。让幼儿知道天气不太冷的时候室外是冻不出冰花的。 “你的冰花在哪里做成的?”(冰箱里) “你为什么不放在院子里或房间里冻冰花”? “为什么院子里、房间里冻不成冰花”?
一、说教材我说课的课题是《三位数除以一位数》,本课是人教版三年级下册第二单元除数是一位数的除法的笔算方法第二课时。这节课是在学生掌握了两位数除以一位数的笔算基础上进行教学的。首先回顾两位数除以一位数的笔算,在此基础上,鼓励学生尝试将过去掌握的两位数除以一位数的算法迁移到三位数除以一位数的笔算上来,它是以后学习较复杂除法的基础,也是学习数与代数的基础之一。1、教学目标(1)使学生理解掌握三位数除以一位数的笔算方法,培养学生有序思考的能力。(2)使学生在活动中积极地探索并理解算理,激发学生学习的热情。 (3)使学生感受数学与生活的联系,能够运用所学知识解决生活中的简单问题。2、教学重难点重点:掌握三位数除以一位数的笔算方法。难点:掌握三位数除以一位数的笔算方法并验算。
二、说教法、学法:根据本节课的教学目标。重点、难点设置,我确定本节课的教法与学法: 我国教育家叶圣陶先生曾经说过“教师教任何功课,‘讲’都是为了达到用不着‘讲’,‘教’都是为了达到用不着‘教’”,这一精辟结论强调了教师要教会学生如何学习,让学生一辈子受用。为突出重点,分散难点,始终使学生参与知识形成的过程。引导学生将“图”与“式”对照起来,进行分析和说理。从而在发挥直观形象思维对于抽象逻辑思维支持作用的同时,让学生逐渐感受数形结合的优势。根据高年级学生已具有处理信息和自主学习的能力,我设计了4个教学环节。教学中通过学生观察、分析、讨论、合作等方式,引导学生寻找计算方法,并通过发现、总结、运用法则调动学生的积极性。
四、是我本次说课最重要的部分——说教学过程。为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为:情境导入、讲授新课、巩固练习、归纳总结、布置作业5个阶段。具体过程如下: 第1阶段:情境导入。我将使用多媒体播放“分生日蛋糕”的情境,提出“假设只剩下1/2的生日蛋糕,但需要分给5个人,每个人能分得多少蛋糕?”通过现实生活中的情境,自然而然地引出分数除法的主体。“兴趣是最好的老师”,而对小学生来说,在学习中培养他们的学习兴趣,激发学习的热情尤为重要。教育学和心理学的研究表明,当学习材料与学生已有的知识和生活经验相联系时,学生对学习才会感兴趣。本节课开始由分蛋糕的场景引入,引起了学生的兴趣,紧紧抓住了学生的注意力,同时紧密联系学生的生活实际,让他们感到数学并不神秘,数学就在自己的身边,更激起了他们探索新知的欲望。
教学难点:理解整数除以分数的计算方法;二、说教法和学法为了突出重点,分散难点,让学生积极主动地参与到知识形成的过程中来。教学中采用分步探究,分步实施的原则。把整数除以分数的计算方法分两步进行探究。1.整数除以几分之一的计算方法;2.整数除以几分之几的计算方法;这样做,可以使学生通过自己的努力,小组合作交流,发现整数除以分数的计算方法。数学教学不仅是让学生获得数学的基础知识,还要教给学生学习知识的方法。培养学生的能力,发展学生的智力。教学中,让学生观察,分析,讨论引导学生寻找方法。再通过发现总结运用法则巩固知识内容。通过调动学生的积极性,不仅使学生学会了,而且会学了,会用了。从而也形成了一套良好学习方法,增强能力发展智力。
2在以自身为中心区分左右的基础上,学会以客体为中心区分左右3培养幼儿的空间方位感,提高思维的灵活性二活动准备木偶,图示三活动过程(一)通过游戏,幼儿复习以自我为中心区分左右师:今天我们要玩一个游戏,当我说左手你们就伸出你们的左手,当我说右耳朵的时候你们就用手指着你们的右耳朵
2、探索玉米列数是双数的规律。3、激发幼儿对数学的兴趣,培养幼儿积极关注身边事物的情感态度。 活动准备:1、糖葫芦一串,完整的玉米一根,分成段的玉米若干(为幼儿人数的三倍,其中三分之一的玉米列数相同;另三分之二的玉米分别贴上红绿圆点或安全图钉),托盘。2、每组安全图钉、圆点标记、小塑料片若干。3、串珠每人一串,勾线笔、记录纸每人一份。4、统计大表格,红、绿圆点标记若干。5、实物投影仪一台
二、重点及难点: 重点:感知8以内的数量 难点:能排除物体大小、颜色的干扰,理解数的实际意义。三、活动准备: 1、纸箱制战斗机(与幼儿人数相等)内有一个,炮弹8发。 2、恶魔城堡情境、小动物若干。四、活动流程: 语言引导、激发兴趣→情景练习、感知数量→排除干扰、巩固练习。五、活动过程:(一)、语言引导、激发兴趣 说明:请幼儿当小小飞行员上蓝天练本领,登上飞机。
2、在巩固线描的基础上进一步学习装饰,初步学习前后空间画法。二、活动准备:记号笔、油画棒、绘画纸三、活动过程: 1、了解鸟的外形特征并用绘画的方式画出来。 师:“请小朋友看黑板上谁来了?师边画边引导幼儿猜猜谁来了?大圆形的是它的头,小圆形是它的眼睛,加上尖尖的嘴巴。椭圆形的是它的身体,身体上有两个翅膀,一个上一个下,加上象梯形一样的尾巴,这个动物就变出来了,看看是谁呀?”(小鸟),“小鸟也需要朋友的,看一个鸟朋友从这里飞来了,”(师再示范一个不同方向的小鸟), 2、初步学习空间画法。 师:“看这只小鸟,先画头,它的身体躲在这只鸟的后面了,怎么画呢?”请幼儿先说说再画出来。“原来碰到前面小鸟的地方,只要跳过去后再画就画出来了。
2、尝试创编歌词及制作图谱,体验歌唱活动的乐趣。 3、感受人与动物间和谐美好的关系,培养幼儿关心、爱护小动物的情感。二、活动准备: 图片《迷路的小花鸭》(一)(二),图谱(一)(二),哭笑脸谱各一个。三、活动过程: 1、练声:我爱我的小动物(5个音阶) (评析:开始部分的练声,既是为下面的歌唱活动作好准备,同时,也让幼儿在歌唱喜爱的小动物时自然地表达对动物的热爱之情。) 2、故事导入,激发幼儿的兴趣。 出示图片(一),师:你看到了什么? 幼A:我看到有一天,一只小鸭子在池塘边玩。 幼B:我看到小鸭子哭了。因为它想妈妈了。 幼C:我还看到了柳树。 师讲述故事:有一天,小花鸭在池塘边的柳树下玩,玩着玩着它迷路了,找不到家也找不到妈妈了,它哭了,哭着喊着叫它的妈妈。 (评析:这是一个开放性的问题,它打破了传统提问“这是什么地方?有谁?”等问题带来的局限性,它使幼儿能充分表达他们对画面意思的理解,使图片变活,也便于幼儿理解教师讲述的故事。)
4.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)一个袋中装有8个红球,3个白球,从中任取5个球,其中所含白球的个数为X.(2)一个袋中有5个同样大小的黑球,编号为1,2,3,4,5,从中任取3个球,取出的球的最大号码记为X.(3). 在本例(1)条件下,规定取出一个红球赢2元,而每取出一个白球输1元,以ξ表示赢得的钱数,结果如何?[解] (1)X可取0,1,2,3.X=0表示取5个球全是红球;X=1表示取1个白球,4个红球;X=2表示取2个白球,3个红球;X=3表示取3个白球,2个红球.(2)X可取3,4,5.X=3表示取出的球编号为1,2,3;X=4表示取出的球编号为1,2,4;1,3,4或2,3,4.X=5表示取出的球编号为1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5个球全是红球;ξ=7表示取1个白球,4个红球;ξ=4表示取2个白球,3个红球;ξ=1表示取3个白球,2个红球.
3.下结论.依据均值和方差做出结论.跟踪训练2. A、B两个投资项目的利润率分别为随机变量X1和X2,根据市场分析, X1和X2的分布列分别为X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B两个项目上各投资100万元, Y1和Y2分别表示投资项目A和B所获得的利润,求方差D(Y1)和D(Y2);(2)根据得到的结论,对于投资者有什么建议? 解:(1)题目可知,投资项目A和B所获得的利润Y1和Y2的分布列为:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,说明投资A项目比投资B项目期望收益要高;同时 ,说明投资A项目比投资B项目的实际收益相对于期望收益的平均波动要更大.因此,对于追求稳定的投资者,投资B项目更合适;而对于更看重利润并且愿意为了高利润承担风险的投资者,投资A项目更合适.
对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、 探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.
一、 问题导学前面两节所讨论的变量,如人的身高、树的胸径、树的高度、短跑100m世界纪录和创纪录的时间等,都是数值变量,数值变量的取值为实数.其大小和运算都有实际含义.在现实生活中,人们经常需要回答一定范围内的两种现象或性质之间是否存在关联性或相互影响的问题.例如,就读不同学校是否对学生的成绩有影响,不同班级学生用于体育锻炼的时间是否有差别,吸烟是否会增加患肺癌的风险,等等,本节将要学习的独立性检验方法为我们提供了解决这类问题的方案。在讨论上述问题时,为了表述方便,我们经常会使用一种特殊的随机变量,以区别不同的现象或性质,这类随机变量称为分类变量.分类变量的取值可以用实数表示,例如,学生所在的班级可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多时候,这些数值只作为编号使用,并没有通常的大小和运算意义,本节我们主要讨论取值于{0,1}的分类变量的关联性问题.