二、说学情:?学生是学习活动的主体。小学四年级的学生在以前的学习中,已经对数据的统计过程有所体验,也学会了一些简单的收集、整理和描述数据的方法,还能根据统计结果回答一些简单的问题,具有初步的统计意识和能力。另外四年级的学生思维比较活跃,喜欢探究发现学习,接受知识的能力也较强,而且也掌握了一定的数学学习方法及策略。这些都是我在教学中可以利用的资源。?纵观学生的知识基础及对教材的剖析,我确立了该课的教学目标以及教学重点和难点。?三、教学目标:?1、使学生充分感受条形统计图的特点,知道条形统计图的意义和用途?2、使学生与老师一起经历条形统计图的制作过程,了解制作条形统计图的一般步骤,初步学会制作条形统计图,并能解决简单的实际问题
一、教材分析《扇形统计图》这一内容选自于人教版义务教育课程标准实验教科书小学六年级上册数学第七单元。有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到统计的实用价值。二、教学目标1、知识与技能认识扇形统计图的特点和作用,能看懂并能简单地分析扇形统计图所反映的情况。2、过程与方法经历扇形统计图的认识过程,体验直观观察学习的方法。3、情感态度与价值观在学习活动过程中,体验数学知识与日常生活的密切联系,激发学生的学习兴趣,培养学生分析、比较、想象的能力,受到科学观的教育。
[设计说明]:只给出情景故事,感知了一个大数,这样还不能引起学生对大数的深刻认识,所以再给出宇宙星空中的这些大数,让学生读读、看看这些数,引起学生强烈的认知上的冲突,形成一种心理上的想读、想写的求知欲望。(二)、引出问题、探索新知在上面的例子中,我们遇到了几个很大的数,看起来、读起来、写起来都不方便,有没有简单的表示法呢?分以下步骤完成。1、回忆100 ,1000,10000,能写成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由学生完成上面4个例子中的数的表示。(学生对160 000 000 000这个数可能表示为、16×1010,教师要利用学生这种错误,强调a的范围)4、教师给出科学记数法表示:a×10( )(1≤a<10)。[设计说明]:通过层层递进的探究设计,启发学生成功地发现“科学记数法”的表示方法,同时又通过学生示错,让学生记住a的范围,体现了以学生为主的探究式教学。
1、 教材的地位和作用本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.2、 教学目标①理解有理数产生的必然性、合理性及有理数的分类;②能辨别正、负数,感受规定正、负的相对性;③体验中国古代在数的发展方面的贡献.3、 教学重点和难点教学重点:理解正数和负数的概念和有理数概念.教学难点:对负数概念的理解和有理数的分类.二、 教学分析鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。
(五)、反馈矫正,注重参与: 为巩固本节的教学重点让学生独立完成: 1、课本23页练习1、2 2、课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论: 3、数轴上的点P与表示有理数3的点A距离是2, (1)试确定点P表示的有理数; (2)将A向右移动2个单位到B点,点B表示的有理数是多少? (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少? 先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。 (六)、归纳小结,强化思想: 根据学生的特点,师生共同小结: 1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数? 2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数? 让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。
五、课堂设计理念本节课着力体现以下几个方面:1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。
一、教材分析:本节课选自北京师范大学教育出版社七年级上册第五章第三节,是学生学习一元一次方程的含义,并掌握了解法后,通过分析图形问题中的数量关系,建立一元一次方程并用之解决实际问题,是学生运用数学知识解决生活中实际问题中的典型素材,可提高学生解决问题的能力,提高学习数学的兴趣,形成学以致用的思想,认识方程运用模型的重要环节。二、学情分析:通过前几节解方程的学习,学生已经掌握了解、列方程的基本方法,在此过程中也初步掌握了运用方程解决实际问题的一般过程,基本会通过分析简单问题中已知量与未知量的关系列出方程解应用题,但学生在列方程解应用题时常常会遇到从题设条件中找不到所依据的等量关系,或虽能找到等量关系,但不能列出方程这样的问题,因此,在教师的引导下,通过学生亲自动手制作模型,自主探索在模型变化过程中的等量关系,建立方程,从而将图形问题代数化。
按此规律,第n个式子是 。师生活动:学生通过观察,分析,归纳发现规律,并用含字母的式子表示一般结论。设计意图:进一步理解字母表示数的意义,理解用含有字母的数学式子表示实际问题中的数量关系的简洁性、必要性和一般性。(四)巩固提升问题:你能给以上这些式子赋予新的含义吗?师生活动:教师举例说明比如:如果p表示我们班的人数,我们班80%的同学喜欢上数学课,那么0.8p 就可以表示我们班喜欢数学课的人数。学生思考、交流后发言五、练习检测(1)5箱苹果重m kg,每箱重 kg ;(2)一个数比a的 倍小5,则这个数为 ;(3)全校学生总数是x,其中女生占总数52%,则女生人数是 ,男生人数是 ;(4)某校前年购买计算机 x 台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,则学校三年共购买计算机 台;(5)某班有a名学生,现把一批图书分给全班学生阅读,如果每人分4本,还缺25本,则这批图书共 本;(6)一个两位数,十位上的数字为a,个位上的数字b,则这个两位数为 .师生活动:学生板演,师生共同评价总结注意(5)带分数化假分数设计意图:进一步提高用含有字母的式子表示实际问题中的数量关系的能力。
序数是表示集合中元素次序的数,是用自然数表示事物排列的次序,让幼儿回答“第几”的问题。认识序数要以认识基数为基础。本班幼儿已学习了10以内初步数概念的数序,为学习序数做好了准备。学习序数不必像学习基数那样逐个数地形成概念,因此可以分两段集中学习10以内的序数,先学5以内的序数,再学10以内的序数,本节课就将内容定为学习5以内的序数。学习序数要求能从不同方向(从左到右,从右到左,从上到下,从下到上)确认物体的排列次序。由于本节课是第一次接触序数,老师就降低了要求,即从左到右,从下到上来排列物体的次序,这符合幼儿的认知经验。在生活中,幼儿已习惯这两个方向来排列物体的次序。数数是从左到右数的,楼层是从下到上数,避免了逆排序造成的干扰。
0的书写有其规范的笔顺,对此学生在第一次书写时,要对学生说清楚0这个数字的启闭与收笔,要让每个学生清楚0在田字格中所占的位置,对个别学生不正确的书写要及时纠正。【设计意图】借助小白兔吃萝卜的有趣情境,用运动的观点,让学生直观形象地体会物体个数从有到无的变化过程,从中让学生知道“没有”可以用数字0表示,知道0所表示的物体个数比123.....要少。三全课总结让学生说一说:这节课你有什么收获?你有什么体会?还有哪些疑问?教师总结:同学们,今天我们知道了一个也没有就用0这个数字来表示,在生活中我们也经常见到0.直尺上的0表示从0开始,温度计上的0,表示的是一个基准.....我们还学会了0的写法。课下希望你们能留心观察,相信你们充满智慧的双眼会发现更多与0相关的问题。
一、教材分析:本教学内容是进位加法第三节课,在此之前,学生已经学习了11~20各数的认识,初步理解加法的含义,掌握了10以内的加法以及简单的10加几的运算,并且有学习9加几和8加几的基础。本课教材在创设“有几只小鸟”的情境中引导学生学习思考学习7加几的多种计算方法,然后安排了练一练,让学生在兴趣中用所用知识尝试解决问题,发展思维。二、教法与学法:本课面对一年级的学生进行教学。一年级的学生有着强烈的好奇心和求知欲。在日常生活中,有的学生已经有了一些计算20以内进位加法的经验,并且,通过前面的学习,学生已经会计算10以内加减法。教师在教学时应创设丰富多彩的活动,让学生在活动中经过独立思考,互相交流算法,体会计算方法的多样性,从而培养学生的创新意识和思维的多样性。
二、说学生一年级学生活泼好动、具体形象思维占主要地位,更容易接受直观演示和情境体验的认知过程。在同时一年级学生受年龄限制特征,注意力不容易集中,在同一种活动中所保持的时间不长,因此课堂形式应该是灵活多变的,听、说、操作、独立思考、小组交流相结合。对于一年级的孩子,从生活中玩耍中学到的知识,要比书本上学到的知识更重要。通过自身体验获得知识能使头脑更加活跃。所授课两个班的孩子有一定的计算基础,绝大多数都能熟练地口头计算10以内的加减法,仅个别孩子还需要借助手指或者学具进行计算。根据具体情境图列算式时,多数孩子都能准确的提取图中的数学信息,但完成一图两式时,部分孩子有一定困难。据分析,这部分孩子对加减法互逆关系的理解不够牢靠,运用数学信息提出数学问题也不牢靠。因此,在学习10的加减法时,个别孩子可能在提问环节还有一定障碍。
(4)以下都按照相同的方式,得数是8、7、6、5、4、3、2、1、0的同学依次上来。把自己的算式展示给大家。老师一一贴在黑板上。(5)师:出示加法表,验证同学们整理的过程。3、巩固练习师;打开课本50页,帮助淘气把加法表填写完。4、课堂小结:师:同学们,今天大家的表现很出色,学会了整理加法算式的方法。反思:本节课是在学完10以内的加减法的基础上整理和复习,目的不仅仅是复习10以内的加法计算,更重要的是引导学生亲身体验,经历一个独立思考,有序整理的过程。初步发展学生提高发现规律的意识和能力。这是学生入学以来第一次的整理数学知识,所以,重点是关注学生是否主动参与整理算式的一个全过程。本来是想着把所有整理的算式都贴上,但是没有位置了。而且中途没机会,也没有向学生展示课件整理的过程。
四、教学过程1、情景引入首先,利用精美课件“购物情景”引入:上衣每件65元,裤子每条35元。问题:①买5件上衣和5条裤子,一共要付多少元?问题:②买5套这样的衣服,一共要付多少元?这样引入目的在于创设一个充满趣味的问题情境,使学生认识到现实生活中蕴含着大量的数学信息,并主动积极的带着自己的知识背景、活动经验和理解走进课堂。2、解决问题,感知规律(1)让学生合作完成,男同学解答问题①得到65×5+35×5=500(元)。女同学解答问题②得到(65+35)×5=500(元)(2)通过分析,两个问题实际上是一样的,两个算式应该相等。即:65×5+35×5=(65+35)×5。(3)新课标强调要让学生经历、体验知识获得的过程,主动参与探索,从而发现规律。在学生独立解答的过程中,我会重点引导学生感悟问题①和问题②的共同特征:买了同样的衣服,体会规律形成的过程。3、检验规律,建立模型
二、学情分析学生在学习本课之前,已经熟练掌握了两位数乘两位数与三位数乘一位数的竖式计算方法,本节课是将已有知识迁移到两、三位数乘法的计算学习中。计算上难度不是很大,所以应该放手让学生自主探索计算方法。但学生可能会在估计积的范围和建立各种算法间内在联系上出现问题,特别是算法中出现的表格法要让学生建立与其他方法的联系上会比较难。三、教学目标1.能结合具体情境估计两、三位数乘法的积的范围。2.探索两、三位数乘法的计算方法,能正确计算,并乐于与同伴交流算法。3.培养计算兴趣和良好的计算习惯,提高利用乘法运算解决实际问题能力。三、教材处理在理解尊重教材的基础上,适当整合并创造性使用教材:1、在情境创设中加入翟志刚的视频图片。2、变基础练习试一试“先估后算“为”先算后估“。【课件出示】
在教学学习新知一时,通过让学生动手掷硬币活动,使学生先猜想再验证,学生就会明白在掷硬币时,可能正面朝上,也可能反面朝上,哪面朝上具有不确定性。再通过对三个问题的分析,结果分别有几种不同情况,最后确定可能性。通过对日常生活中不同事件的分析,学生就会得出许多事件的结果是不可预知的,具有不确定性。学习新知一通过设计一系列问题引导学生对不确定性问题的理解和掌握。学习新知二通过先让学生分析、讨论交流,再连一连,就知道第(1)个盒子摸到的结果只有一种情况,一定是黄球;第(2)个盒子摸到的结果也只有一种情况,一定是白球,所以不可能是黄球;第(3)个盒子摸到的结果有两种情况,可能是黄球,也可能是白球,所以只能连“可能是黄球”,这样学生就会用“一定”“可能”“不可能”等词语描述事件发生的情况。
当然独立思考是合作的前提,没有独立思考的合作交流是空的,在本教学中也有体现,例如在进行猜想验证的教学环节中,我要求每个学生自己先写一个式子,再四人小组进行交流,最后全班进行交流。在总结出乘法结合律的规律时,要求学生用自己的语言叙述概括,用自己的方法把这个规律记住。充分发挥学生的想象力,以就能获得学生创新的思维火花,同时体现“主动参与、积极思考、合作发现、体验成功、健康发展”的教学思路。在巩固练习阶段,充分给学生以自主权,学生以“创造”的空间,并通过比较,感受计算方法的灵活多样,培养学生灵活运用知识进行解题的能力。在练习的设计上,设计了有层次的练习题,使学有余力的学生在原有的基础上有所提高,体现了因材施教的思想,落实了“人人学有价值的数学”、“人人都能获得必要的数学”、“不同的人在数学上得到不同的发展”基本教学理念。
引导学生发现:把8名同学的复杂问题,转化为从2名开始研究,到3名,到4名,到5名,找出规律。相机补充图表中没有填上的算式是:1+2+3+4=10重点分析:为什么+2、+3、+4呢?让学生充分地看图理解,并充分让学生说出从表或图中所发现的规律。引导学生发现:每增加一名队员,该队员都要分别跟之前的队员进行一场比赛,所以增加的场数应该是(人数-1)还要说明-1是因为自己不和自己比。出示课件,让学生说算式,然后概括所有的情况,n个人比赛,规律是:引导学生发现解决策略:从简单的情形开始,找出规律,算出结果。(板书)利用规律学生独立解决问题。(设计意图:给予学生充分探索规律的时间和空间,让学生动脑思考,动手写出规律,在自主探究中理解“从简单的情形开始,找出规律,算出结果。”的策略,培养学生合作和发现问题的能力。)生活中还有什么问题和这个问题的道理是一样的?全班交流:握手、拥抱??
1、教学内容。“加法交换律和乘法交换律”是北师大版《义务教育课程标准实验教课书》四年级上册第四单元的内容。书中把两部分内容编排在一起。在备课过程中,根据教学内容和学情我先引导学生观察发现加法交换律,然后在学生掌握加法交换律的基础上迁移过来。让孩子们大胆猜想,进而验证,得出乘法交换律。2、加法、乘法交换律在数学学习中的作用。本单元所学习的几条运算定律,不仅适用于整数的加法和乘法,也适用于有理数的加法和乘法。随着数的范围的进一步扩展,在实数甚至复数的加法和乘法中,它们仍然成立。因此,这些运算定律在数学中具有重要的地位和作用,被誉为“数学大厦的基石”。而加法、乘法交换律又是这数学大厦基石中的基石。
学生虽然在此前的学习中,对四则运算中的一些性质和规律有感性的认识,但加法结合律毕竟是属于理性的总结和概括,比较抽象,学生不易理解和掌握。因此,教师在教学过程中,要利用学生已经掌握的知识,让学生独立解答,然后引导学生分析、比较不同的方法,并通过自己的举例发现规律,概括出相应的运算律。根据以上教材内容和结构的分析,考虑到学生已有的心理结构特征,我确定了如下教学目标:1、理解并掌握加法结合律,并能够用字母来表示加法结合律。2、经历探索加法结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算定律。3、在具体情境中体会应用加法结合律进行简便计算的实际意义,感受到加法结合律的价值,与日常生活的密切联系,形成一定得应用意识。重点:理解并掌握加法结合律,能用字母来表示加法结合律。难点:经历探索加法结合律的过程,发现并概括出运算定律。