一、说教材:稍复杂的方程的教学任务例1教学解方程ax±b=c及其应用(列方程解形如ax±b=c的问题)(1)把解方程和用方程解决问题有机结合,在解决问题的过程中解较复杂的方程。(2)结合现实素材(足球上两种颜色皮的块数)引出,这种问题用算术方法解决思考起来比较麻烦。(3解方程的过程其实是由解若干基本方程构成的(y-20=4,2x=24),需要强调把2x看成一个整体。(4)可以列出不同的方程,如2x-4=20,关键是使学生理解数量关系。二、说学生:学生在前面已经学习了简单的方程数量关系,及简单方程式的解法,而且我在前面的教学中已经笨鸟先飞,让学生接触了形如:ax±b=c的方程式。三、说教法:根据学生的实际情况,我准备在教学过程中,重点讲解稍复杂方程式的数量关系式的分析研究,让学生根据应用题的题意列出正确的数量关系式。
还有一点思考是作为教师应该有这样一种认识,学生从自己的头脑中搜索有价值的数学知识储备,并对这些知识储备进行筛选和取舍,这是一种重要的能力。换句话讲,这就是学生分析问题和解决问题的能力,这种能力是需要培养的,这也是在第二学段“综合应用”中必须把握的准则。教学目标:1、让学生经历粉刷围墙的实践活动,巩固长方体表面积的计算方法,加强数学知识在实际生活中的应用。2、通过活动,培养学生收集、分析信息的意识和能力,使学生能根据实际情况,选择合理方案。3、让学生体验数学知识与生活的紧密联系,并利用数学知识科学地指导生活,感受成功。教学重点:整理分析和比较信息,制定方案。教学难点:策略的优化。教学准备:课前做好相关数据收集整理的准备工作,教师尤其要在课前了解学生调查的涂料价目。学生准备:计算器,记录纸等。
【设计意图:这是为例4的教学而设计的情境,起过渡作用,使学生明确通分的重要性,同时能促进学生的学习积极性、主动性。】(二)出示学习目标:(1)教学例3第一层:尝试做例3,让学生独立探究,运用旧知识去解决新问题。教师针对这一问题,启发点拨:这两个分数能直接比较大小吗?那么,能不能借助一些学过的知识,设法把这两个分数化为能直接比较的分数,再比较出它们的大小呢?学生:独立探究,小组交流,全班汇报。【设计意图:让学生独立尝试探究,初步感知通分】第二层:看书自学例3,并出示自学 要求:1.书上是如何比较 和大小的?(动笔写一写) 2.什么叫公分母?3.什么叫通分?质疑问难:“通过你们自学例3,还有什么疑问吗?”“找两个分数的公分母,为什么要找4和6的最小公倍数呢?”【设计意图:通过自学理解什么是“公分母”和“通分”,使学生对新概念有一个自我内化的过程】
(通过这道题的练习,可以看出中国的汉字是非常美的。谁能举例说出哪些汉字可以写成轴对称图形吗?)(师生共同品味中国文字的对称美,从而宏扬中国文化,做到知识性、技能性、思想性和艺术性溶为一体。)4、配乐剪轴对称图形比赛。请同学们拿出一张彩色纸用对折的方法剪出一个轴对称图形,然后贴在白纸上。并把剪得的作品贴在黑板上让大家欣赏。引导学生观察:哪些图形较美?为什么?五、归纳小结。设问 :今天学了什么?什么叫轴对称图形? 怎样判断轴对称图形? 什么叫对称轴?怎样找出轴对称图形的对称轴?(新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。)全课小结:这节课,我通过五个环节的教学设计,既遵循了概念教学的规律,又符合小学生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。
3、 教学例6仿照例5 的解题过程,用比例的知识来解答例6.练习后,让学生说一说自己是怎样想的。检查解答过程,弄清为什么列成积相等的等式解答。4、 小结应用比例知识解题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正(反)比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题的关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)(三)练习提高1、基础练习2、判断说理不解答由学生打手势表示,增添了教学的趣味性,又增大了学生的参与面把握学生学习的效果。(四)全课小结这节课学习了什么内容?正反比例实际问题要怎样解答?
5、计算分析,感受水浪费的巨大师:刚才这位同学说的很有道理,如果我们每个人都不注意节约用水的话,一年浪费的水是巨大的,同学们计算一下,按每个人一年浪费一个水龙头的滴水量计算,全国13亿人一年将会浪费多少方水。生:我反对计算13亿人的浪费情况,因为我们国家很多地方还很穷,根本没有自来水。师:刚才这位同学说的也很有道理,那我们就计算整个深圳人浪费水的情况。据第五次人口普查显示,深圳人口已达800多万,我们就按800万人计算。(学生分组计算)师:谁来说一说你们组计算的情况?生1:我们组通过计算得出,深圳人按这样计算,一年大约浪费2.4亿立方米水。(其他组表示同意)师:谁来形容一下2.4亿立方米水有多少?生:(1)2.4亿立方米水会把我们大家都给淹死了……(2) 们深圳人一年大约需水10亿立方米左右,2.4亿方水占了我们一年用水量的25%了。
首先,学生带着如下三个问题自学课文,(电脑出示):(1)用什么方法可以得到计算圆锥体积的公式?(2)圆柱和圆锥等底等高是什么意思?(3)得出了什么结论?圆锥体积的计算公式是什么?其次,学生操作实验,先让学生比较圆柱和圆锥是等底等高。再让学生做在圆锥中装满沙土往等底等高的圆柱中倒和在圆柱中装满沙土往等底等高的圆锥中倒的实验,得出倒三次正好倒满。使学生理解等底等高的圆柱和圆锥,圆锥的体积是圆柱体积的,圆柱的体积是圆锥的3倍。第三、小组讨论,全班交流,归纳,推导出圆锥体积的计算公式:V= Sh。第四、让学生做在小圆锥里装满沙土往大圆柱中倒的实验,得出倒三次不能倒满。再次强调,只有等底等高的圆柱和圆锥才存在着一定的倍数关系。第五、师生小结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。
四、教学过程1.创设情境 导入课题同学们:课前,我让大家在生活中寻找圆柱,你们找到了吗?谁愿意来展示一下。李老师也找到一些图片,我们一起来欣赏:(多媒体展示生活中的圆柱图片)生活中的圆柱可真多呀!为什么要把它们要设计成圆柱形呢?学生可能会说:因为圆柱没有棱角,很光滑,所以栏杆、柱子要设计成圆柱形;因为圆柱可以滚动,所以压路机、刷墙滚子设计成圆柱形……同学们,你们说得很好,圆柱有这么广泛的用途,今天让我们进一步从数学的角度来认识圆柱。(板书“圆柱的认识”)2.自主学习 初步认识接下来,我让学生结合自带的圆柱自学教材第10—11页上的内容。指导学生学会看书,从书本上获取知识是学习数学的重要方法。因此,在感性认识圆柱的基础上,我让学生通过自主阅读获取圆柱各部分的名称。 同学们:通过自学,你们都获取了哪些知识?请拿着手中的圆柱来说一说?
多年的小学教学经验告诉我:小学高年级的学生已有一定的自学能力,关键是看我们设置的情景和学生的生活是不是紧密联系,是不是唤起了学生的已有表象,并不和使用多种媒体有绝对联系。所以在学习例题中我引导学生自主探讨,从中发现问题,提出问题,最后独立解决问题,从而训练学生数学语言表达能力,发展学生的创造性思维。⒋质疑问难。㈣新知总结对上面所学知识,教师引导学生作一次归纳总结,让学生明确要求圆周长时,必须设法求得圆的直径或半径。这样使学生对求圆周长有明确的认识,进一步深化重点。㈤新知运用国家教委加强与改进小学数学教学的意见中提出:基础训练是使学生融会贯通地掌握知识,形成熟练技能和发展智力的重要手段。所以在本节练习中我以基础练习为主,适当补充了提高练习。
2.交流讨论的结果:(老师根据学生的汇报板书)①假设都是鸡,则有8×2=16只脚,实际有26只脚多了26-16=10只脚.②一只鸡换成一只兔,就会多4-2=2只脚,所以笼子有10÷2=5只兔.③鸡就有8-5=3只.师:真是了不起,不用试也能求出鸡兔来,刚才我们是假使全是鸡,如果假使全是兔,会是怎样的情况呢?3.你还会用所学的方法解决吗?(引导学生用方程解答)4.我们已经能够用三种方法解答鸡兔同笼问题,到底对不对呢?怎样才能知道?———检验(板书)[设计意图:此环节是本课的重点,放手让学生合作探究,学生从体验、尝试到讨论、汇报,结合课件的直观演示,学生个人或集体的智慧在这里可以得到充分的展现。方程法、假设法对于大部分学生来说至少有一种方法是他自己会理解或掌握的,老师在学生汇报的过程中应机敏地倾听,机智地诱导,引导学生较为完整、准确地说明算理,特别是假设法算理,进而让全体学生在交流的过程中学会倾听、学会思考、学会解释、学会质疑,学会辩驳。]
⑴各种收入是什么意思?请举例说明;⑵什么叫税率?你能写出税率的公式吗?(税率=应纳税款÷各种收入×100%)3、介绍,纳税比率。税率的高低由国家统一规定,国家规定下面的一般纳税率是:⑴增值税13%或者17%⑵营业税务3%至20%(行业不同,标准不等,如交通行业5%,娱乐行业20%)⑶消费税务3%到50%不等。⑷个人所得税5%到45%不等。[意图:理解税种是教学中的难点,为此,采取适当分层,多举实例,观察思考,讨论交流,介绍说明等方法,让学生了解在现实生活中纳税的种类,为例题的教学做好铺垫。]活动三:学习纳税算法。1、出示例题:一家饭店十月份的营业额约是30万元。如果按营业额的5%缴纳营业税,这个饭店十月份应缴纳营业税约多少万元?2、读题理解:①按营业额5%缴纳营业税这句话你是怎样理解的?②如何列式计算?3、试做汇报:学生独立试尝试计算后,指名回答,教师板书:30×5%=1.5(万元)4、反馈练习:
学生的学习活动是一个生动活泼而富有个性的过程,为了把学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学的知识和方法解决实际问题。我又设计了以下练习题:1、脑筋乐园:学校田径运动会即将举行,你有办法帮学校在操场上画出一个半径为50米的圆吗?2、(1)应用圆的知识解释下列现象,并写出来。为什么井盖也得做成圆形的?人们在围观的时,为什么会自然地围成圆形?(2)搜集有关圆的资料。贴到教室的数学角上,大家共享。3、画出各种大小、不同颜色的圆,组合出一幅美丽的图画。(设计意图)将学生探索的阵地从课堂延伸到课外,引导学生主动地应用所学知识和方法解决实际问题。(我认为把本句提前,这里删去,这样显得更连贯)(五)全课总结1、让学生谈收获,进行自我评价。2、我对整节课进行知识要点归纳和对学生学习情况进行评价。(这样总结,我注重学生的自我评价,自我体验和个性发展。即学生情感的体验和收获)(我认为蓝色字那句可删去)
(二)归纳小结。设问:今天学了什么?什么叫轴对称图形?怎样判断轴对称图形?什么叫对称轴?怎样找出轴对称图形的对称轴?(新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。)现在能把两侧大小不同的蝴蝶图画成一模一样吗?(教师拿着新课引入时的不对称的蝴蝶图)(前后呼应,解答课前疑难,目的是检查学生活用知识的情况。)全课小结:这节课,我通过五个环节的教学设计,既遵循了概念教学的规律,又符合小学生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。在教学过程中让学生动口、动手、动眼、动脑为主的学习方法,使学生学有兴趣、学有所获。附板书设计:轴对称图形如果一条图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
得到13-8=这个算式后,我让小朋友们想办法,“13-8怎么算?你是怎样想的?把你的想法告诉你小组的同学们。”由于我是用讲故事的形式引出这一问题的,因此在计算13-8时,小朋友们就被迫要自己想办法去计算,而不能光借助情境图去直接数出得数。这并不阻碍算法的多样化,相反更好地实现了算法多样化的目的,真正让学生成为了数学学习的主人。为了增加这堂课的趣味性,我有意将学生说出来的各种算法分别以他们的名字来命名,这样一来,学生兴趣盎然,都积极投入到了寻找算法的思考活动中来了。在寻求多样化的过程中,充分发挥了学生学习的主体性,培养了学生的创新精神,让每一个学生都能体验学习的成功。学生们在思考、讨论中可能会出现这样几种算法:
一.创设情境,解决问题。(一)直观认识1.请每个同学举起手中的毛线。说说你的毛线和其他同学有什么不一样。(学生会观察到有长短,颜色,粗细的不一样。)设计这个环节是为了让学生先找出线段的非本质特征。只有去掉了非本质特征,学生才能更明确到记住线段的本质特征。)2.请每个同学在认真观察,说说你的毛线和其他同学的有什么是一样的。这个环节学生最基本能发现手中的毛线是直的。(二).讲解概念1.通过直观的认识后,由教师讲解线段这个概念:像我们刚才手中这一条直直的毛线,就可以看做是线段。(这句话的讲解中,教师要突出直直的,这是线段的最基本特征,还有一个词是是看做是,数学的是严谨的,不能说这条毛线是线段,并让学生也举起毛线和老师一起说说这句话。)
教学内容:统一长度单位教材分析:通过量一量说一说想一想等活动切实感受到统一长度单位的必要性及其对生活的重要意义。学情分析:在上册“比一比”中学了比较物体长短的基础上学习的。尽管学生有这方面的经验和基础,但是长度单位的操作和应用是多种知识的综合,对小孩来说还是比较难的,在教学中应根据学生特点,注重实践性,培养观察力。教学目标:1、让学生通过量一量、说一说的活动,体验统一长度单位的过程,感受统一长度单位的必要性,为厘米、米的学习打下基础。2、让学生用不同实物作标准进行测量,培养学生的动手、思考能力,以及合作、估测的意识。3、通过不同的测量活动,让学生体验测量活动的过程,感受学习与生活的联系,体验学习数学的乐趣。
二、教学目标1、知识与技能:通过观察、操作等实践活动,进一步加深对平移和旋转新知的认识。培养学生动手实践能力,并初步获得绘图、剪图等技能。2、数学思考:在对简单图形变化、运动规律的探索过程中,发展空间观念,培养形象思维能力和逻辑思维能力,初步渗透变换的数学思想方法。在解决问题过程中,能进行简单的、有条理的思考。3、解决问题:能在教师指导下,从日常生活中发现简单的数学问题。有与同伴合作解决问题的体验。初步学会表达解决问题的大致过程和结果。4、情感与态度:在同伴和教师的鼓励与帮助下,对身边的数学有好奇心,能够积极参与数学实践活动。能克服在数学活动中的某些困难,获得成功的体验,有学好数学的信心。了解并喜爱中国民间的传统工艺“剪纸”。
二、教法运用分数在日常生活中经常出现,但学生对它的认识却各不相同。新课程标准视学习为“做”的过程、“经验”的过程,凸现学生学习的实践性特点。因此,本课的设计力求在教法上体现“在玩中学,在做中学,在合作交流中学”的思想。本节课以引导发现法为主,综合运用多种教法,创设有利于学生参与探索活动的学习环境,帮助学生学习分数的有关知识,实现促进学生能力发展的教育目标。三、学法指导在学法上则突出“自主学习,实践感知”的特点,加强数学实践活动,让学生主动建构数学知识。学生对数学知识的学习,不是被动接受,而是主动建构,而动手操作对学生的建构有着积极的促进作用。让学生在动手、动脑、动口的过程中实现知识的迁移类推,主动建构数学知识。
在教学中我力求做到以下几点一、体现“活动性”,让学生在活动中体验。《新课标》明确指出:“让学生在具体的数学活动中体验数学知识。”因此,我在新授部分以学生喜欢摸子活动开始,以期激发他们学习的热情和兴趣,使学生在活动过程中感知“一定”、“可能”、“不可能”,进而能判断生活与数学中的“一定”、“可能”、“不可能”这三种情况。并能用自己的语言描述事情发生的三种情况;(然而在课堂中,让学生把这三个词语放在一起例举数学与生活中的实例吧,学生说起来还是有一定难度的,所以在教学中我只有通过自己先举例在让学生说,这时学生才能说出例子来。)最后又让学生小组合作学习感知体验可能性是有大小的,达到巩固与应用的目的。
3、画集合图在人数确认后,就让学生来分别指一指喜欢语文的和喜欢数学的以及两样都喜欢的。引导学生用黄颜色的笔圈出喜欢语文的同学。用红颜色的笔表示出喜欢数学的同学。让学生自己来思考、探索解决问题的方法,通过学生的操作与实践去发现、经历和体会集合图形成的过程,从而形成表象。让学生画圈,使画出集合图水到渠成,也让学生进一步体验到集合图的直观形象、简洁明了的作用。4、经过刚才的演示、讨论、交流,想想看,图该怎样改动?师生共同完成展示图的修改。5、学生修改自己的设计,同桌互查。只有给学生充足的时间“做数学”,画、说、站、调整……这样学生才能实现对新知识的自我建构。6、各部分的意义讨论各部分的意义。重点是让学生说清楚集合图各部分的意义,并在此基础上知道那些数学信息。