方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
教学目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念。2.会画圆柱、圆锥、球的三视图,体会这几种几何体与其视图之间的相互转化。3.会根据三视图描述原几何体。教学重点:掌握部分几何体的三视图的画法,能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法教学过程设计一、实物观察、空间想像设置:学生利用准备好的大小相同的正方形方块,搭建一个立体图形,让同学们画出三视图。而后,再要求学生利用手中12块正方形的方块实物,搭建2个立体图形,并画出它们的三视图。学生分小组合作交流、观察、作图。议一议1.图5-14中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么样的?2.在图5-15中找出图5-14中各物体的主视图。3.图5-14中各物体的左视图是什么?俯视图呢?
准备:活动前幼儿完成需要帮助的人调查;幻灯:部分需要帮助的人的图片资料;幼儿捐款统计表,背景音乐:《爱的奉献》,捐款箱一只幼儿每人准备一份零钱。流程:引出助人话题→说说自身体验→交流调查情况→讨论帮助方法→模拟捐款活动一、从老师休息说起,引出助人话题 1、提问:还记得老师为何休息了两个星期?2、引导幼儿小结:老师是献血助人,这是一件光荣的事,是一件好事。二、说说自身得到帮助的人和事,感受受助情感体验。1、说说谁帮助过你?2、别人帮助你时心里怎么想?
活动准备 拉线木偶玩具一个(或用纸板制成的活动拉线木偶人)。(准备的材料是用来创设游戏情境的。若没有活动木偶,也可以采用手偶教具代替。)活动过程1.示木偶人创设游戏情境,引起幼儿的兴趣。 教师以小木偶的El吻向大家自我介绍:“我是木头人。今天我想和小朋友一起玩一个游戏,名字叫‘山上有个木头人。”接着,教师边操作木偶拉线,边念儿歌,帮助幼儿了解游戏的基本内容。 表演结束后,教师继续以木偶的口吻与幼儿交谈。教师可以这样说:“谁想和我玩游戏呢?那你必须先告诉我,刚才我说了些什么?”引导幼儿回忆儿歌内容,学会念游戏儿歌,正确发出每个字音,特别是“山”“上”“三”。(活动开始,采用木偶表演的形式创设游戏情境,更符合小班幼儿的认知特点,更能吸引小班幼儿的注意力,激发幼儿对游戏的兴趣。 在此活动中,教师通过语言激发幼儿学念儿歌,在幼儿学习过程中,要及时纠正幼儿的不正确发音,教幼儿正确地念儿歌·这样可以为以后顺利开展游戏奠定基础。)2.向幼儿介绍游戏的规则及玩法。(1)游戏时须念儿歌,并可自由做动作。儿歌做完后就不能动,也不能发出声音。(2)如果谁动了或发出了声响,就必须将手伸给同伴,而同伴则拉住他的手说:“本来要打千千万万下,因为时间来不及马马虎虎打三下。”然后边拍同伴的手心边说:“一、二、三。游戏结束。(听说游戏规则中一定要包含语言练习的要求,否则就不能达成语言学习的目标。此游戏规则中要求幼儿边念儿歌边进行游戏,这就充分体现了语言练习的要求。 对于小班幼儿来说,教师制定的规则一定要简单,语言也一定要简洁明了,以便于幼儿理解游戏的规则,基本了解游戏的玩法。)
一、教材分析用乘法口诀求商是数学计算中的一块重要基石,它在整个计算领域中起着举足轻重的作用。为了让学生掌握好这部分知识,教材根据儿童的认知规律将用乘法口诀求商分为两阶段学习。第一阶段,安排在本册书的第二单元表内除法一:学习“用2~6的乘法口诀求商”,该单元着重让学生掌握求商的一般方法。第二阶段,安排在本册书的第四单元表内除法二:学习“用7、8、9的乘法口诀求商”,本单元着重让学生在熟练掌握用口诀求商一般方法的基础上,综合运用表内乘除法的计算技能解决一些简单的涉及乘,除运算的实际问题。“用7、8的乘法口诀求商” 即是本单元的第一课时,也是在学习“用2~6的乘法口诀求商”的基础上进行教学的。本节课中,教材通过一幅学生熟悉的“欢乐的节日”的主题图,引出要用除法计算的实际问题。通过解决具体问题,使学生体会求商的计算是解决问题的需要,用乘法口诀求商是帮助人们解决实际问题的工具,因此学好这部分知识是非常重要的。
一、创设情境,导入新课教师边放课件边讲故事):今天老师给你们讲一个“猴妈妈分桃”的故事。有一天,一群小猴到山下去玩,走着走着,看到一棵桃树上结满了又大又红的桃,就摘了很多。回家后,猴妈妈看到小猴们拿了这么多桃回来,可高兴了,说:“妈妈分桃给你们吃。”二、合作交流,探索新知1、动手操作,探究方法(1)提出问题。师:小猴摘了多少个桃?准备每只小猴分3个,可分给几只猴子?(板书:12个桃,每只小猴分3个,可以分给几只小猴?)(2)学生列式:12÷3=(3)分一分学生小组合作,动手分一分。(可以用其他的物体代替)(4)说一说分的过程可能有以下几种:第一种:先分给第一只小猴3个桃,再分给第二只小猴3个桃,然后给第3只小猴3个桃,最后3个桃正好分给第四只小猴。……12个桃可分4只猴子。
(二)解决问题,总结方法《新课程标准》主张充分挖掘数学教材潜在的“再创造空间”,让学生亲自经历将实际问题抽象成数学模型并进行解释与应用的过程,让学生最大限度地参与数学知识的发现、提出、形成、应用的再创造过程,以促进学生主动的发展。因此我创设了福娃晶晶为迎接奥运会做准备的数学情景,设计了四组有关7、8、9的用除法算式解决的数学问题。1、出示晶晶的问题:(1)做了56面彩旗,平均每行挂7面,能挂多少行?(2)做了56面彩旗,要挂成8行,平均每行挂多少面?(3)做了49颗五角星,平均分给7个小朋友,每人多少颗五角星?(4)准备了27个气球,平均9个摆一行,能摆多少行?2、解决晶晶的问题:让学生根据"友情提示"的要求完成自学内容后再小组交流、全班交流。在交流过程中引导学生观察:56÷8=7和56÷7=8这两个算式,从而发现一句乘法口诀可以计算两个除法算式。
(一)说教材本节课是在学生基本上掌握了亿以内数的读、写方法以及比较两个数的大小和把整万的数改写成用万作单位的数后,用"四舍五入"法求近似数。这部分内容不好总结,但是与过去的旧知识联系紧密。由讲故事引入课题,进而渗透旧知,由复习省略百位、千位后面的尾数求近似数,类推到省略万位后面的尾数求近似数。这样引导,有利于培养学生归纳推理的能力。(二)说教学目标1.能正确的用"四舍五入"法求近似数。2.培养学生比较分析的思维能力,养成良好的学习习惯。(三)说重难点使学生学会如何用“四舍五入”法将非整万的数改写成用“万”做单位的近似数。(四)说教法这部分知识与旧知联系比较紧密,因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新知识的方法,培养学生的归纳推理能力。
一、教学理论依据及设计理念以新课程理念和新课标为指针,依据建构主义理论、学科探究理论和多元智力理论,采用探究式的教学模式来组织实施本节课的教学。学生成为课堂的主体和知识的主动构建者。通过创设多种情境,让学生积极参与、体验、感悟,主动获得新知,并逐步提高学生发现问题、分析问题和解决问题的能力。教师从课堂的主宰变为课堂的主导,是学生学习活动的组织者、引导者和合作者。教学过程是一个发散式的学生自主学习的过程。采用自主、合作、探究式的教学方式,让学生有多元选择,激发他们的潜能,发展他们的个性。二、教材分析1.教材的地位与作用:本框题是《生活与哲学》第二单元《探索世界与追求真理》第六课“求索真理的历程”的第二节内容。本单元的核心问题是如何看待我们周围的世界,该问题也是《生活与哲学》整本书的核心问题之一。
7.我国人力资源开发利用面临四大挑战在全面建设小康社会进程中,我国人力资源开发与利用面临着以下四个方面严峻挑战。(1)劳动力供给高峰的到来加剧了劳动力供求总量矛盾。持续的经济增长和人口计划生育控制,使得我国人口再生产在不到30年的时间内完成了从“高出生率、低死亡率、高自然增长率”的类型到“低出生率、低死亡率、低自然增长率”类型的转变,人口在日增长率已经连续数年低于千分之十。然而,庞大的人口基数及其低速增长仍对中国未来经济增长和社会发展带来巨大的就业压力,大量预测表明,未来20年是中国人口数量增长和劳动力供给的高峰时期。20世纪90年代以来,中国劳动年龄人口比重(16—59岁年龄组)由1990—1996年期间的61%~62%上升到1999年的63.2%。这种趋势将会持续到2020年左右达到峰值,直到老龄化进程抵消了数量增长效应,劳动年龄人口的比重才会趋于下降。到2020年,中国劳动年龄人口将由2000年的8.61亿上升到10.04亿,平均每年新增劳动力715万人。
一、教材分析人教实验版高中思想政治必修4第二单元第六课的第二框题。本框题所在单元的核心问题是如何看待我们周围的世界,该问题也是《生活与哲学》整本书的核心问题之一。而对这一问题的解决,单元中最终是由“在实践中追求和发展真理”来实现的。 本框题是所在单元的归宿,是对物质与意识、实践与认识关系的整体呈现与深华,是如何正确看到我们周围世界问题在世界观上的升华,是单元的最基本的知识目标之一。 二、教学目标(一)知识目标:识记真理的含义;理解真理最基本属性是客观性、真理是有条件的、具体的,认识具有反复性、无限性,在实践中认识、发现、检验、发展真理;分析“追求 真理是一个过程”。(二)能力目标:提高比较分析的能力和明辨是非的能力,培养学生具体问题具体分析的能力及用发展观点看问题的能力。(三)情感、态度与价值观目标:学会在现实生活中正确区分真理和谬误,正确对待人生道路上面临的挫折和困难,树立在实践中不断认识、丰富、发展真理的思想。
材料一 公元l世纪时,古罗马博物学家普林尼在其被誉为百科全书式的著作《自然史》中把中国叫做“丝之国”,古罗马的贵族都以穿着中国丝绸为荣。他还说中国出产的钢很硬,质地很好。17世纪以来,许多欧洲国家的宫廷和王公贵族更是竟相购藏中国的瓷器、漆器和丝绸、刹绣,甚至不惜重金到中国定做,运回国内珍藏起来。(l)材料一反映了古丝绸之路对罗马上层社会生活的影响。清指出汉代丝绷之路的起止点,并说明其开通的重大历史意义。(4分)
(3)课堂拓展:是通过提供的三个链接,让学生了解更多的日历。便于学生直接快捷地获取相关信息。锻炼了学生运用网络资源自主学习的能力,使其变为学习的一种新方式。(4)课后作业:充分发挥学生的主动性,创造能力,同时也把所学的数学问题延伸到了课外。通过课后师生的交流,从时间和空间上形成了立体网状的交流信息渠道,促进了学生的发展。最后以时间老人的分别赠言结尾,首尾呼应,对学生进行珍惜时间的教育。五、教学反思本节课我以建构主义理论为指导。依据新课程标准中“重过程,轻结论”的教育理念。尝试在网络环境下,运用设疑激趣、直观演示,实际操作等教学方法,引导学生动手操作、观察辨析、推理验证、自主探究。意在通过信息技术与学科整合,充分发挥网络资源的优势,为学生创设动脑思考、动手尝试、动口表达的时间和空间,把学习的主动权还给学生,在师生互动的动态生成中共同推进学习过程。
一、 说教材1、教材内容:人教版小学数学第十册《解简易方程》及练习二十六1~5题。2、教材简析:本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。3、教学目标:(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
师小结:以简代繁,是让语言简明的又一方法。除了常用的人称可以替代,还可以对不必要的具体内容进行概述,以达到简明的效果。替代的词句要巧,既要简洁,又不能改变原意。由此我们可以总结出语言简明的另一种方法:“语言简明”的方法:④巧用替代法——善于概括,巧用指代。师补充:汉语是一种非常丰富的语言,它的许多表达形式都是以简明为原则而形成的,像成语、简称、紧缩句、合说等。我们在运用语言时,可以适当地选用这些表达形式,使语言达到简明。需要注意的是,简明与否不能单纯以字数多少为标准,要从语言表达的需要出发,当简则简,当繁则繁。不能为了“简”而影响“明”,甚至让人产生误解。归纳这节课的学习要点,让学生将其内化为自身的语言意识并参与写作实践,学以致用,训练使语言“简明”的能力,培养良好的写作习惯。
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2