一、创设情境,导入新课。1.学生交流“神舟五号”有关资料,【出示课件2】“神舟五号”发射与飞行过程的录像。2.这节课让我们走进课文追寻奋斗者的足迹,让我们走进课文去探求去思考。(板书课题:8千年梦圆在今朝)请同学们读读课文前面的阅读提示,看看阅读提示给我们提出了哪些阅读建议。【出示课件3】默读课文,为什么千年的飞天梦能在今朝实现?二、初读课文,整体感知。(一)初读,解决字词。1.读课文,用自己喜欢的方式认识生字词语,扫除字词障碍。2.出示词语。
一、说教材《童年的水墨画》是统编小学语文三年级下册第六单元的一篇精读课文,本文是一组儿童诗,由诗人张继楼的《溪边》《江上》《林中》三首小诗组成,以跳跃的镜头捕捉了乡村儿童的典型生活场景,展现了儿童生活的丰富多彩以及无穷趣味。 《溪边》一诗生动形象地描绘了儿童垂钓的场景。诗歌先描绘平静的溪水把人影染“绿”,再写水面钓竿上立着一只“红”蜻蜓,这一“绿”一“红”,既是和谐唯美的相互映衬,又是恰到好处的点缀,使画面充满了色彩美感;接下来,描绘了静静的溪水映着柳树、钓鱼孩子的倒影、钓鱼竿、红蜻蜓,空气都仿佛停止了流动,直到鱼儿上钩的一刹那,溪水动了,人影碎了,鱼跃人欢,画面顿时变得生机盎然。这一静一动的结合,是本诗的微妙高明之处。 《江上》描摹了一群水乡孩子江中嬉戏的欢乐场面。一群戏水的孩子,那样的调皮,像鸭群一样钻入水中,接下来“一阵水花”与“两排银牙”,将童年的烂漫快乐渲染得淋漓尽致,鲜活的画面仿佛定格在我们的脑海之中。
【说目标】教学目标1.正确读记“尝试、火焰、捆绑、身躯、探索、惨重、穿越、振奋、规模、协作、嫦娥奔月、炎黄子孙”等词语。2.默读课文,抓住课文的主要内容,了解中国航天事业的发展历程和千年梦圆的经过,激发民族自豪感。3.学习在具体的事实描述中说明道理的写法,体会中国航天人团结合作、默默奉献、勇于探索、锲而不舍的科学精神。教学重难点1.了解中国航天事业最终实现梦想的原因,从中体会中国航天人所体现的团结合作、 默默奉献、 勇于探索、锲而不舍的科学精神, 激发学生的民族自豪感。2.学习在事实的描述中说明道理的写法。这篇课文激情澎湃,字里行间充满了中国人民实现飞天梦想的自豪与骄傲。教学这一课,我注重引导学生用朗读从字里行间品味自豪和骄傲的感情。
四、说教法和学法:1.说教法:学习这篇课文,要让学生通过自读自悟和讨论交流,了解课文主要内容──“我”发现了什么、是怎么发现的;从中激发学生勤学好问、大胆想象、乐于探究的学习精神;体会心理活动描写对塑造人物形象的重要作用,能真实表达自己的内心感受。2.说学法:在本课的教学中,我主要教给学生学会自主探究,学会自己发现问题和解决问题的方法,学会合作学习,在合作学习中发现和解决更多的问题。引导学生学会抓住重点句段理解课文的方法。五、说教学流程:1.交流揭题,激发兴趣。引导学生回忆交流学过的课文中描写童年生活的片段,由片段交流引出“发现”,由片段交流引出“童年”,由对“童年”的交流引出课题完成“童年的发现”,激发了学生阅读课文的兴趣。2. 紧扣“发现”,初读课文。(1)默读课文,读准字音,读通句子。(2)自学课文生字词,可以用笔在文中圈出来,然后用合适的方法来解决生字词。
一、本节课的设计理念: 课题中的“发现”一词是本文的文眼,教学中引导学生从课题入手提出疑问,然后进行梳理明确主要学习任务。学生自主学习,了解“我”发现了什么,重点了解“我”是怎么发现的,理清作者童年时发现胚胎发育规律的过程。二、教材分析:本课是一篇鼓励求知、鼓励大胆想象、鼓励探究发现的课文,通过作者回忆童年时发现胚胎发育规律这件趣事,反映了儿童求知若渴的心理特点和惊人的想象力。第一部分先概述了“我”九岁时发现了有关胚胎发育的规律,却在后来因此受到惩罚。第二部分具体叙述“我”发现有关胚胎发育规律的前后经过。最后,写这个发现在几年后老师讲课时得到证实,“我”情不自禁地笑出了声,结果被老师误解受到处罚,但“我”从中获得感悟。本文故事情节充满童真童趣,语言风趣幽默,并有多处内心活动的描写,真实展现了孩子内心世界。
一、说教材:《我是小学生啦》是《道德与法治》一年级上册第一单元的教学内容。本单元作为教材的起始内容,旨在通过“开开心心上学去”“拉拉手,交朋友”“我认识您了”“上学路上”四个教学内容,帮助学生尽快地适应新环境,情绪稳定、心情愉快地学习。从而实现“让学生初步养成良好的生活、卫生习惯,适应并喜欢学校生活”方面的课标要求。“开开心心上学去”是本单元的起始课,在单元教学中起到了关键性的铺垫与引领作用。“上学啦,真高兴”作为是本课的第一个教学内容,旨在针对学生刚刚入学的不同心理,帮助他们感受自己角色的转换,体验上学的快乐,逐步适应、喜欢上小学生活,获得积极愉悦的心理体验。说学情:绝大部分学龄前儿童在家长或学前教师的引导下,入学前就已经对即将开始的小学生活充满期待了。他们懵懂地知道上小学就意味着自己“长大了”,他们愿意步入校园,对校园生活充满好奇。虽然学生在开学前,都会经过短暂的新生培训,但是这些培训多停留在日常行为规范上。开学后,随着校园日常教学的正常开展,面对“新的环境、新的要求,新的老师与同学”,会让部分学生变得比较敏感和脆弱,他们会感到校园生活既新鲜又陌生,既期待又恐惧。二、说教学目标:1、知识与能力知道自己成长为一名小学生了,体会成为小学生的角色变化,初步适应并喜欢学校生活。2、情感与态度为自己成为一名小学生而感到高兴和自豪 ,对小学生活充满美好的憧憬3、行为与习惯学会与同学、老师有礼貌地交往。4、过程与方法在游戏及参观等活动过程中,初步学习认识新朋友的方法,了解学校生活,喜欢到学校学习。
2、激发对自我的认同及喜爱之情。材料准备:1、记录卡;录像、“我”(外部、内部);我的数字档案卡人手一张;活动过程: 一、理解数的实际意义:1、这几天你们找过体内和体外的数字了吗?现在请你们记录下来。2、幼儿用记录卡进行记录,老师观察指导。3、交流记录卡内容,老师有意识地将不变和可变的数字分别记录在两张卡上。4、说说小朋友身上哪些数字是一样的?哪些数字是不一样的?为什么?
【学习目标】1.知识与技能:知道氧气的制取及检验方法,复习巩固氧气的相关性质。2.过程与方法:通过“探究能使带火星木条复燃所需氧气的最低体积分数”的探究性学习,学习科学探究的基本方法。3.情感态度与价值观:提高实验设计的能力和合作意识,复习巩固相关的基本操作,培养学习化学的兴趣。【学习重点】氧气的实验室制取操作步骤和性质检验。【学习难点】实验操作过程中的注意事项。【课前准备】《精英新课堂》:预习学生用书的“早预习先起步”。《名师测控》:预习赠送的《提分宝典》。情景导入 生成问题1.复习引入:实验室用高锰酸钾制取氧气的反应原理是什么?操作步骤有哪些?2.明确学习目标,由学生对学习目标进行解读。合作探究 生成能力阅读课本P45~P46的内容。提出问题:实验室加热高锰酸钾制取氧气的实验中,使用了哪些仪器?哪部分是气体发生装置?哪部分是气体收集装置?为什么可用排水法收集气体?讨论交流:结合化学实验基本操作和氧气的性质讨论归纳。
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
在第1环节基础上,再让同学认识到函数Y=2X-1的图象与方程2X-Y=1的对应关系,从而把两个方程组成方程组,让学生在理解二元一次方程与函数对应的基础上认识到方程组的解与交点坐标的对应关系,从而引出二元一次方程组的图象解法。3、例题训练,知识系统化通过书上的例1,用作图象的方法解方程组,让学生明白解题步骤与格式,从而规范理顺所学的图象法解方程组,例题由师生合作完成,由学生说老师写的方式。4、操作演练、形成技能让学生独立完成书P208随堂练习,给定时间,等多数学生完成后,实物投影其完成情况,并作出分析与评价。5、变式训练,延伸扩展通过让学生做收上P208的试一试,而后给一定时间相互交流,并请代表发言他的所悟,然而老师归纳总结,并让学生通过自已尝试与老师的点拔从“数”与“形”两个方面初步体会某些方程组的无解性,进一步发展学生数形结合的意识和能力。6、检测评价,课题作业
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.2.相信学生并为学生提供充分展示自己的机会本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都会动手操作,每个学生都有体会的过程,都有感悟的可能,这种形式让学生切身去体验问题的情景,从而进一步帮助学生理解比较复杂的问题,再把实际问题抽象成数学问题.3.注意改进的方面本节课由于构题新颖有趣,所以一开始就抓住了学生的求知欲望,课堂气氛活跃,讨论问题积极主动.但由于学生发表自己的想法较多,使得教学时间不能很好把握,导致课堂练习时间紧张,今后予以改进.
解:设截取圆钢的长度为xmm.根据题意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圆钢的长度为686.44πmm.方法总结:圆钢由圆柱形变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”就是我们所要寻找的等量关系.探究点三:面积变化问题将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解析:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).
(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)前两天的水位是上升的,第1天的水位是+0.20米;第2天的水位是+0.20+0.81=+1.01米;第3天的水位是+1.01-0.35=+0.66米;第4天的水位是+0.66+0.13=+0.79米;第5天的水位是0.79+0.28=+1.07米;第6天的水位是1.07-0.36=+0.71米;第7天的水位是0.71-0.01=+0.7米;则水位最低的是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米,则本周末河流的水位上升了0.7米.方法总结:解此题的关键是分析题意列出算式,用的数学思想是转化思想,即把实际问题转化成数学问题.探究点二:有理数的加减混合运算在生活中的其他应用
活动目的:(1)通过小组讨论活动,让学生理解坐标系的特点,并能应用特点解决问题。(2)培养学生逆向思维的习惯。(3)在小组讨论中培养学生勇于探索,团结协作的精神。第四环节:练习随堂练习 (体现建立直角坐标系的多样性)(补充)某地为了发展城市群,在现有的四个中小城市A,B,C,D附近新建机场E,试建立适当的直角坐标系,并写出各点的坐标。第五环节:小结内容:小结本节课自己的收获和进步,从知识和能力上两个方面总结,老师予于肯定和鼓励。目的:鼓励学生大胆发言,敢于表达自己的观点,同时学生之间可以相互学习,共同提高,老师给予肯定和鼓励,激发学生的学习热情。第六环节:布置作业A类:课本习题5.5。B类:完成A类同时,补充:(1)已知点A到x轴、y轴的距离均为4,求A点坐标;(2)已知x轴上一点A(3,0),B(3,b),且AB=5,求b的值。
因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.
答:书包单价92元,随身听单价360元。最优化决策:聪明的Mike想了想回答正确后便同爸爸去买礼物,恰好赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?提示:书包单价92元,随身听单价360元。2)在人民商场购买随声听与书包各一样需花费现金452× =361.6(元)∵ 361.6<400 ∴可以选择在人民商场购买。在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元)。因为362<400,所以也可以选择在家乐福购买。因为362>361.6,所以在人民商场购买更省钱。第五环节:学习反思;(5分钟,学生思考回答,不足的地方教师补充和强调。)
故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.