解:∵y=23x+a与y=-12x+b的图象都过点A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴两个一次函数分别是y=32x+6和y=-12x-2.y=32x+6与y轴交于点B,则y=32×0+6=6,∴B(0,6);y=-12x-2与y轴交于点C,则y=-2,∴C(0,-2).如图所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法总结:解此类题要先求得顶点的坐标,即两个一次函数的交点和它们分别与x轴、y轴交点的坐标.三、板书设计两个一次函数的应用实际生活中的问题几何问题进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题,在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
学习目标1.掌握两个一次函数图像的应用;(重点)2.能利用函数图象解决实际问题。(难点)教学过程一、情景导入在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(厘米)与燃烧时间x(小时)之间的关系如图所示.请你根据图象所提供的信息回答下列问题:甲、乙两根蜡烛燃烧前的高度分别是 厘米、 厘米,从点燃到燃尽所用的时间分别是 小时、 小时.你会解答上面的问题吗?学完本解知识,相信你能很快得出答案。二、 合作探究探究点一:两个一次函数的应用(2015?日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
解:设正比例函数的表达式为y1=k1x,一次函数的表达式为y2=k2x+b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函数的表达式为y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵点B在y轴的负半轴上,∴B点的坐标为(0,-52).又∵点B在一次函数y2=k2x+b的图象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函数的表达式为y2=118x-52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x与售价y的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.第五环节课时小结内容:总结本课知识与方法1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;4.把k,b代回表达式中,写出表达式.2.本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.第六环节作业布置习题4.5:1,2,3,4目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度不应过大.
方法总结:(1)利用列表法估算一元二次方程根的取值范围的步骤是:首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
首先列表,利用未知数的取值,根据一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0)分别计算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知数的大致取值范围,然后再进一步在这个范围内取值,逐步缩小范围,直到所要求的精确度为止.(2)在估计一元二次方程根的取值范围时,当ax2+bx+c(a≠0)的值由正变负或由负变正时,x的取值范围很重要,因为只有在这个范围内,才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板书设计一元二次方程的解的估算,采用“夹逼法”:(1)先根据实际问题确定其解的大致范围;(2)再通过列表,具体计算,进行两边“夹逼”,逐步获得其近似解.“估算”在求解实际生活中一些较为复杂的方程时应用广泛.在本节课中让学生体会用“夹逼”的思想解决一元二次方程的解或近似解的方法.教学设计上,强调自主学习,注重合作交流,在探究过程中获得数学活动的经验,提高探究、发现和创新的能力.
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
(一)创设情境,引入新知1、引出小数新课程标准强调数学与现实生活的联系,要求数学教学必须从学生熟悉的生活情景和感兴趣的事物出发,使他们体会到数学就在身边,也感受到数学的趣味和作用,增强学生的数学应用意识。一开始我便与学生谈话:汤老师周末带孩子去超市买东西,可是他看不懂商品的价格,你们愿意帮他吗,(愿意)。大家一起帮他读出这些文具的价格是多少钱。激发了学生的兴趣,让学生充满爱心和自信心走进课堂。然后请学生仔细观察这些价格,有什么不同,从而引出小数的概念。2、教学读法我充分相信学生的能力和知识广度。聪明的学生可能一下子就能读出小数,有的学生家长教过或听到过小数怎样读,所以我让学生大胆试一试,然后经过学生小组讨论总结出小数的读法。
这样设计,既复习了新课所必备的旧知,又自然合理地引入新课,一开始就紧紧吸引了学生的注意力,激发起学生的求知欲。(二)探索新知1、质数和合数的意义(教学例1)。(1)让学生拿出印发的写有例1原题的练习纸,利用学过的求约数的方法,写出1-12每个数的所有约数。(2)按照约数个数的多少进行分类,提出以下问题让学生讨论:①每一个数约数的个数相同吗?各有多少个约数?②按照每个数的约数个数的多少,可以把这些数分成几类?你认为是一类的用同一符号标出来。检查学生讨论情况并提问:你是怎样分的?为什么这样分?每一类各包括了哪几个数?让学生充分发表意见,然后师生共同归纳,并用投影出示三种分类情况:
这部分内容教学两位数减两位数的口算,这是学生在学习了两位数减整十数、一位数,以及千以内笔算减法的基础上进行教学的。例题仍以购买玩具火车和玩具汽车为题材,让学生通过求两件玩具的价格差引入新的内容,引导学生探索两位数减两位数的口算方法并比较退位减与不退位减在算法上的异同,正确地理解和掌握算法。教材有意识地让学生经历算法的发现过程,并在合作与交流的活动中,理解和掌握比较合理的口算方法。“想想做做”也是先安排了一些基本练习,帮助学生及时地巩固两位数减两位数的口算方法,然后让学生通过题组比较,进一步完善算法,并重视通过估算促进口算能力的提高。再引导学生综合运用所学知识,解决一些生活中的实际问题。二,说教法1)创设学生熟知的生活情景,把解决实际问题与计算教学结合起来。2)重视让学生在尝试探索的学习过程中,经历算法的发现过程。
师:非常正确。现在我们知道了表示方法,但是我们该怎么读呢?也就是说我们现在知道了怎么用数学符号去表示,或者说是会书写了。但是我们要说给别人听该怎么说呢?也就是该怎么读它呢?(正号!)正确。这两个符号在我们数学的术语里面又有了另外一个称呼,就是“+”在这里读着“正号”,“-”在这里读着“负号”。这个读法是数学里面规定的,是我们日常用语中的习惯读法。这里的+5,+6而不是我们所说的加上5,加上6,加是一个运算过程,而正号只是一个符号,它可以和数字组合在一起作为是整体的,是一个整体的数字,是不含运算的。同理,这里的-5,-6它也不是减去5,、减去6,而是一个-5、-6的数字。为了和我们的加号和减号相区分,所以我们就给了它另外一种读法。
(4)判断中进行教学内容的递深,形成了反思——学习——强化的整个学习过程。在学生做出“6是倍数”的正确判断之后,并不简单换章,而是以此为契机“教学找一个数的因数”以谈话导入,形成知识相互的联系与区别,“谈话:必须说清谁是谁的倍数,谁是谁的因数。所以6可能是某些数的倍数,也可能是某些数的因数,那我们就来找一个数的因数。你能找出36所有的因数吗?”(5)讨论互评,自主学习放手让学生学习找一个数的因数,从无序到有序,从自寻到互学,请学生板书,学生评价,“提问:你是用什么方法找到一个数的因数,可以介绍给大家吗?还有其他方法吗?”1×36=36 36÷1=362×18=36 36÷2=183×12=36 36÷3=124×9=363 6÷4=96×6=36 36÷6=6(6)自主不失指导,掌握不失总结如:提问:5为什么不是36的因数?(因为36÷5不能整除,有余数)
二、 说学情:二年级的学生由于他们的年龄特点,具有较高的学习热情,喜欢做游戏,喜欢与他人合作,同时也具备了一些简单的逻辑推理能力。基于以上情况,本节课将以游戏的形式为主,让学生通过生动有趣、形式多样的猜测、推理游戏,使学生在具体的情境中感受简单的推理过程,获得一些简单的推理经验,提高学生的分析能力与合作能力。三、说教学目标:知识与技能目标:通过观察与形式多样的猜测活动,使学生经历简单的推理过程,初步获得一些推理经验。过程与方法目标:通过借助连线、列表等方式整理信息,并按一定的方法进行推理。态度与价值观目标:在简单的推理过程中,使学生感受推理在生后中的广泛应用,初步培养学生有序地、全面地思考问题的意识。培养学生初步的观察、分析、推理能力。四、说教学重点:经历简单的推理过程,初步获得一些简单的推理经验。五、说教学难点:初步培养学生有序地、全面地思考问题的能力。
1、组织理解近似数的含义。出示例8的主题图。聪聪去调查了育英小学的学生数,他写下了这样的一句话:“育英小学有1506人,约是1500人。”育英小学到底有1506人还是1500人呢?为什么?组织学生进行讨论、交流。思考:后半句约1500人是什么意思?小组汇报:A、认为育英小学的认数是1506人,因为他告诉我们就是1506人,后半句他说的是约是1500人,是说他们学校的人数和1500人的差不多。B、也认为育英小学有1506人,他说约有1500人是大概就是1500人的意思。师小结:我们把1506这个很准确的数字就叫做“准确数”,而1500这个和1506差不多的数就叫做“近似数”。(边说边板书)引导学生明白近似数更容易记,因为它正好是正百数。出示例8主题图比较一下1506和1500这两个数,体会一下准确数和近似数哪个数更容易记住
四、说教学策略和方法本课的设计与实施,是一段艰难的过程,同时,更是一段充满着创造与激情的过程。我把本课的教学大致分成了四个部分。一、亲历生活,交流发现祖国幅员辽阔,春秋季南北温差变化,如此难得的学习资源怎能不好好地利用呢?课前,我给学生布置了一个任务:请你对全国各地的气温进行一次调查。上课开始的5分钟,是学生对他们的调查进行交流的时间。在这个开放与灵动的5分钟里,既有“小小天气播报员”精彩地播报,更有孩子们围绕着调查数据展开的精彩对答,请看录像(录像)。正是基于这种对生活的亲身感受,学生自然地走进了负数。在对直观数据进行观察与分析的过程中,学生建立起对“负数”的感性认识。实践表明,教师为学生搭建一个交流的“舞台”,学生就能为教师呈现出一个开放的课堂、动态的课堂。
1、自主检测现在我们要开始攀登主峰了,道路是崎岖的,我相信同学们能够克服重重困难登顶成功,只要细心,你就能行。学生独立完成习题。2、评价完善一生汇报答案,其余自我核对,矫正错误。(四)、归纳小结 课外延伸1、归纳小结这节课我们主要学习了什么内容?你最大的收获是什么?你觉得自己的表现怎么样?教师适时的对学生的学习情况作以情感性和知识性评价。2、课外延伸课本第九页思考练习。(设计意图:让学生总结所学,在交流反思中,意识到学习方式的重要性和数学内容的延续性,激发学生进一步探究知识的欲望。让学生把这节课的收获和尚存在的疑问告诉小组的同伴,针对学生疑问采用生生交流,师生交流的形式给予解决,这样不但使问题得以解决,还培养了学生的团队协助精神。)
三、制作统计图教师:事先我们一起搜集了这几年中我们班同学家庭拥有计算机的情况,并制成了统计表,请谁来介绍一下。(学生利用事先制成的统计表介绍数据)如果请你将它制作一份折线统计图,你有信心完成吗?小组讨论:你认为在制图时应做哪些工作?有什么注意点?(学生小组讨论后交流)在交流中,教师顺应学生回答,并相应介绍折线统计图各部分名称:(1)横轴:一般用于标明日期的前后;(2)纵轴:标明数据,反映单位长度表示的数据大小,一般最高数据比统计到的最高数据稍高一些;(3)制表日期和单位。学生独立在练习之上尝试练习。教师指名演示,同学互相评价并改正。统计分析:从这张统计图上你可以获得哪些信息?学生相互交流,也可以提问请同学回答。
3.第三个环节是:巩固深化,应用新知。首先让学生完成课本76页练习十三的第一题。主要是检验学生对复式折线统计图绘制方法的掌握情况,并能对复式折线统计图所表达的信息进行简单的分析、比较。练习时,先让学生在书上独立完成,再说一说制图的正确步骤,我用多媒体演示,并提醒学生注意最高气温和最低气温对应的折线各用什么表示,还要写上数据和制图日期,根据学生的制作情况,还可以组织学生讨论一下,两条折线上的数据怎样写就不混淆了?最后让学生看图回答题中的问题,这里重点帮助学生弄清“温差”的含义,另外,在回答最后一个问题时,学生可能会说“我喜欢看统计图”,我就重点让学生说说为什么喜欢看统计图?从而让学生进一步体会复式折线统计图的直观、形象的优越性