双方根据《上海市优惠价房出售管理办法》的有关规定,签订本合同。1.甲方同意将坐落在上海市 区(县) 街道(镇) 路 (新村弄) 支弄 号 室计建筑面积 平方米的房屋以优惠价出售给乙方。2.上开房屋按住房综合造价的 % 年每平方米建筑面积 元计价,另计房屋地段、层次、朝向、设施因素计算,每平方米建筑面积售价 元,共计售价(大写) 元。3.乙方在合同签定时交纳定金叁百元整。4.乙方在合同签订后30天内一次付清购房款,甲方给予 %优惠,乙方实付价款(大写) 元。5.乙方要求分期付款,必须征得甲方同意。首期付款占应付款 %,计(大写) 元。余额计(大写) 元,分 年付清,月利率 ‰,余额款本息共计(大写) ,每月月底前交付(大写) 元,最后在 年 月底前全部付清。合同签订后30天内交付首期购房款。
根据《中华人民共和国建筑法》、《中华人民共和国合同法》和《建筑工程安全生产管理条例》,本着平等、自愿、公平和诚实信用原则,结合工程实际情况,通过甲乙双方协商一致达成协议(合同)如下:一、承包工程名称及施工日期工程名称:九仓·东庭华府。承包工程: 住宅楼。开工日期: 年 月 日。竣工日期: 年 月 日。二、协议(合同)价款承包工程面积为: ㎡。清包人工费单价为: 元/㎡。清包人工费总价为:(小写) 元(大写) 元。奖励方案见附件。三、工程承包方式承包方式:清包人工费,经济独立核算承包。执行各种施工规程、规范和业主方、甲方的现场指示。以现场样板、核准的图片为准。属于乙方施工范围而未按规范要求施工,甲方将扣除相应款项。
(二)初读课文,整体感知 (预计用时4分钟) 首先听老师读课文,听清字音。接着学生自己朗读课文,借助拼音把字音读准,把课文读通顺,画出带有生字的词。同桌两个互相读读画的词语。
(一)教学目标:1.品读课文,凭借语言文字感受荷兰如诗如画的田园风光。2.在诵读中体会作者的情感。背诵自己喜欢的两个自然段。(二)教学重点难点:感悟并说出文章所展示的诗情画意。二、说教法、学法:(一)创设情境法学生是最富有情感的生命体,真实、鲜活的情境能丰富学生的表象,激活他们的思维、情感、联想、想象,因此,“游览荷兰田园风光——招聘小导游——设计宣传画”这一情境,使课文中静止的语言文字活动起来,把学生深深卷入到这一真实的情境中去,成为其中一个积极的参与者,主动的探索者,教师的教育意图巧妙地渗透其中。(二)朗读感悟法重视有感情地朗读训练,采用多种形式调动学生自觉能动性,使学生在读书中逐步悟出文章所表达的情感,再通过读来表达自己所体验到的情感。同时对学生的朗读要进行适时合理的评价,激发学生向更高的朗读目标努力。
1.通过预习指导,使学生借助课文的注释、工具书和参考资料了解时代背景、作者简况及各段大意,疏通文句。 2.讲授课文,指出作者政治主张的历史局限时,不必在什么是秦二世而亡的真正原因上旁征博引,同时对文中涉及的历史人物及史实,也不要过多介绍。可在课外指导学生读点通史或历史故事(如《东周列国志》,虽是小说,但基本事件多见诸其书)。
分析歌曲 1、聆听乐曲,想一想它能够分为几个段落。2、讨论交流。音乐由三个段落组成,以小提琴和长笛交替演奏的十六分音符旋律为蜜蜂主题,用音色粗壮的铜管描绘大江。蜜蜂主题为D调,大江主题为降A调,两主题的叠合,刻画了由远方嗡嗡飞至的蜜蜂遇到拦断了道途的江水。第二段,两主题的调性分别作上、下小三度的推移,在F调上重合,描绘蜜蜂在江河上空飞越。第三段,两主题的调性再次分别作上、下小三度推移,蜜蜂的调性(降A)与大江的调性(D)正好是第一段两主题调性的互换,意味着蜜蜂飞过大江后,“弱者”变成了“强者”、貌似强大的江流被小蜜蜂“征服”了。
一、情景导入1、使用多媒体课件播放前面的课程的《新疆之春》,让学生随着音乐踏步进入教室。2、谈话导入新课:师:刚才我们所听到的音乐,大家能听出来是用什么乐器演奏的吗?生:小提琴。师:是的,看来同学们对于生活中的事物都有一定的洞察力。那么,你知道这段音乐叫什么名字吗?生:《新疆之春》。师:对,《新疆之春》,那么今天我们要学习一首也是我国传统民族的地区的歌曲——《蜜蜂过江》。设计意图:随着熟悉的旋律步入教室,既活跃了课堂气氛,又让学生有了强烈的探知欲望。再以谈话法引导学生了解新课内容,进一步激发学生的学习兴趣。
一、课程导入 1、在我国云南丽江地区居住者20余万古老的纳西族人民,他们有自己独特的语言,文字,有悠久的文化传统。《蜜蜂过江》选自《纳西一奇》的第三乐章,是一首轻快诙谐的曲子。作者用弦乐和木管快速轻盈的密集音符,嗡嗡得奏出蜜蜂主题。 2、播放《蜜蜂过江》。 3、学生回答老师提问的相关问题。 4、你还知道一些有关《蜜蜂过江》的知识吗?如果知道不多,现在有什么办法去了解?(启发学生利用互联网资源搜索相关资料)。二、拓展学习 1、学生分组讨论利用互联网资源搜索相关资料的网址及要搜索的关键词语。 2、分组选派代表进行网上搜索。 3、每组选派代表展示自己搜索到的内容,向其他同学介绍《蜜蜂过江》有关知识。 4、师总结搜索情况。 5、再次播放音乐让同学有更深的印象。 6、师向学生推荐优秀音乐欣赏网址。
1,猜一猜 师:这里有一个盒子,盒子里有一朵花,谁能猜出这朵花是什么颜色的?盒子里的花儿的颜色是确定的,为什么你们会有那么多不同的答案? ……师:好,老师给一个提示:红色和黄色。会是什么颜色呢?师:要想准确猜出球的颜色,有一个统一的答案,怎么办? 师:满足你的愿望,第二个提示:不是红色的。2、猜球游戏: 小朋友看,老师这里有一个白色和一个黄色的乒乓球,现在把它们放到盒子里,我们一起来玩一个猜一猜的游戏,好吗? 师:我摸出其中一个,你猜猜是什么颜色的球呢?师:猜得准吗?老师给你们一些提示吧:我摸出的不是黄球,那我摸出的是什么颜色的球?你是怎么猜的?师:那盒子里面的是什么颜色的球呢?你是怎么猜的?小朋友们很聪明,根据老师的提示能准确地判断出球的颜色,这种方法就是我们今天要学习的简单的推理。
问题情景,导入新课1、多媒体课件出示例1主题图,问:图上的小朋友在干什么?你们测量过体重吗?测量了几次?读一年级刚入学时,你测量的体重是多少?(学生自由汇报各自的体重情况)怎样才能让大家一看就明白我们班所有人的体重情况呢?二、活动体验,探究新知1、电脑出示统计表(1): 体重(千克)15以下16~20 21~25 26~30 31以上人数 师:现在我们就用“正”字记录法来统计一下刚入学时的体重(集体活动)2、活动结束后,师生共同将收集的数据整理后填入表格中。3、二年级时,我们的体重有什么变化呢? 电脑出示统计表(2) 体重(千克)15以下16~20 21~25 26~30 31以上人数 集体进行统计活动,并将结果填入表中。4、讨论:如果想把两年的体重数据填入一个统计表中,该如何表示呢? 学生讨论后,在黑板上出示表格(3):(单位:千克)
今天我说课的内容是人教版一年级数学下册第三单元《分类与整理》。我打算从说教学内容、说教学目标、说教学重难点、说教具准备、说教法学法和说教学过程等方面进行说课。一、 说教学内容一年级数学下册第三单元《分类与整理》要求学生在分类的基础上用自己的方式呈现整理的结果,但又不是正式的学习统计图和统计表,它是为以后学习统计图和统计表打下基础。二、 说教学目标一年级的心理特点和有具体到抽象的认知规律,我确定以下的教学目标:1.使同学能按照给定的标准或自己选定的标准对事物进行分类;能对分类结果进行整理,能够用自己的方式(文字、图画、表格等)呈现分类的结果;能对数据进行简单的分析,能根据数据提出并回答简单的问题。2.在小组交流合作中学习,经历收集信息、分类、统计的过程,体会对同一事物按单一标准分类的一致性。三、说教学重难点根据教材的编排和学生年龄特点,我认为本节课的重点是按单一标准对事物进行分类,本节课的难点是对分类结果进行整理,完成简单的统计活动,也就是能根据结果提出问题,回答问题。针对本节课的重难点,我设计的突破方法是首先通过把黑板上图形摆放整齐,让学生体会分类的意义和作用,然后创设情境,让学生在讨论合作交流中体会按单一标准对事物进行分类得到结果的一致性,最后对分类结果进行整理,完成统计活动。
第一个部分:让同学们用简单的律动随着音乐跳出三个主题所表达的情绪。让同学们用肢体的律动感受这三种不同的情绪。 第二个部分:通过简单的律动,比较这三个主题情绪的变化和音乐的陈述给律动的感觉带来的不同之处。(五)拓展(想一想):此环节的设立是为了发散学生的思维,能够让学生通过对本作品的欣赏,从侧面了解音乐学科以外的知识,同时,以本曲为音乐背景,也没有脱离本节课的教学内容。(六)小结本课的主旨是“抓住时间”,因此在本课结束时,用一首《明日歌》来收尾,让学生懂得时间宝贵的道理,同时也起到了学科整合的作用。最后让学生听着乐曲走出教室,结束本节课的学习。五、总结在本教学中,我力求让学生以“听和动”为主,开展不同形式引导学生倾听音乐、表现音乐,引导学生从乐曲的旋律、节奏、音色、速度等方面,认知形形色色的钟表形象, 体会人们当时喜悦的心情。
1、 教材的地位和作用本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础.2、 教学目标①理解有理数产生的必然性、合理性及有理数的分类;②能辨别正、负数,感受规定正、负的相对性;③体验中国古代在数的发展方面的贡献.3、 教学重点和难点教学重点:理解正数和负数的概念和有理数概念.教学难点:对负数概念的理解和有理数的分类.二、 教学分析鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。
第一环节:回顾引入活动内容:①什么叫做定义?举例说明.②什么叫命题?举例说明. 活动目的:回顾上节知识,为本节课的展开打好基础.教学效果:学生举手发言,提问个别学生.第二环节:探索命题的结构活动内容:① 探讨命题的结构特征观察下列命题,发现它们的结构有什么共同特征?(1)如果两个三角形的三条边对应相等,那么这两个三角形全等.(2)如果一个三角形是等腰三角形,那么这个三角形的两个底角相等.(3)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形.(4)如果一个四边的对角线相等,那么这个四边形是矩形.(5)如果一个四边形的两条对角线互相垂直,那么这个四边形是菱形.② 总结命题的结构特征(1)上述命题都是“如果……,那么……”的形式.(2)“如果……”是已知的事项,“那么……”是由已知事项推断出的结论.
求证:直角三角形的两个锐角互余.解析:分析这个命题的条件和结论,根据已知条件和结论画出图形,写出已知、求证,并写出证明过程.已知:如图所示,在△ABC中,∠C=90°.求证:∠A与∠B互余.证明:∵∠A+∠B+∠C=180°(三角形内角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A与∠B互余.方法总结:解此类题首先根据题意将文字语言变成符号语言,画出图形,最后再经过分析论证,并写出证明的过程.三、板书设计命题分类公理:公认的真命题定理:经过证明的真命题证明:推理的过程经历实际情境,初步体会公理化思想和方法,了解本教材所采用的公理,让学生对真假命题有一个清楚的认识,从而进一步了解定理、公理的概念.培养学生的语言表达能力.
本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.
解:有理数:3.14,-53,0.58··,-0.125,0.35,227;无理数:-5π,5.3131131113…(相邻两个3之间1的个数逐次加1).方法总结:有理数与无理数的主要区别.(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示.(2)任何一个有理数都可以化为分数形式,而无理数则不能.探究点二:借助计算器用“夹逼法”求无理数的近似值正数x满足x2=17,则x精确到十分位的值是________.解析:已知x2=17,所以417,所以4.117,所以4.120)中的正数x各位上的数字的方法:(1)估计x的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x的百分位、千分位、…上的数,从而确定x的值.
方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯通,在解决问题时才能得心应手.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型三】 动点问题如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.解析:当点P处于弦AB的端点时,OP最长,此时OP为半径的长;当OP⊥AB时,OP最短,利用垂径定理及勾股定理可求得此时OP的长.解:作直径MN⊥弦AB,交AB于点D,由垂径定理,得AD=DB=12AB=4cm.又∵⊙O的直径为10cm,连接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂线段最短,半径最长,∴OP的长度范围是3cm≤OP≤5cm.方法总结:解题的关键是明确OP最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
第二,要把调查研究贯穿始终,实干担当促进发展。开展好“察实情、出实招”“破难题、促发展”“办实事、解民忧”专项行动,以强化理论学习指导发展实践,以深化调查研究推动解决发展难题。领导班子成员要每人牵头XX个课题开展调查研究,XX月底前召开调研成果交流会,集思广益研究对策措施。各部门、各单位要制定调研计划,通过座谈访谈、问卷调查、统计分析等方式开展调查研究,解决工作实际问题,帮助基层单位和客户解决实际困难。第三,要把检视问题贯穿始终,廉洁奉公树立新风。认真落实公司主题教育整改整治工作方案要求,坚持边学习、边对照、边检视、边整改,对标对表xxx新时代中国特色社会主义思想,深入查摆不足,系统梳理调查研究发现的问题、推动发展遇到的问题、群众反映强烈的问题,结合巡视巡察、审计和内外部监督检查发现的问题,形成问题清单。