1.南方园林江南有温和的气候、充沛的水量、丰盛的物产、优美的景色、宽松的人文环境,其园林营建必然自呈特色。《中国大百科全书·江南园林》将其总结为三点:第一,叠石理水、水石相映。太湖石奇特多姿,在庭中造型尤佳。最称绝的是苏州瑞云峰、杭州植物园绉云峰、上海豫园玉玲珑。第二,花木种类多。第三,建筑风格淡雅、朴素。布局自由,结构不拘定式,清新洒脱,小巧细腻,幽雅美丽。小阁临流,冷色多,像山水画。青瓦素墙,褐色门窗,官僚政治意识淡薄,书卷气深浓。南方园林以江南园林为代表。江南园林主要指以苏州、杭州、无锡、扬州、南京、上海、常熟等城市为主的私家园林。江南园林属于文人写意派山水园,文人画家参与造园,以人工造景为主,规划巧妙,设计精致,人文气氛浓。造园师在有限的空间再现真实的自然山水,以小见大,意蕴无穷。
阴阳原是指日光的向背,向日为阳,背日为阴。我国古代地名中的“阴”和“阳”实际上是一种方位指示,“日之所照曰阳”,也就是说太阳所能照到的地方就称为阳。 山水阴阳是说古代以山南、水北为阳,以山北、水南为阴。 形成这种局面的原因是山峰高耸,日光能照射到的地方是山的南面;而河流位于地平面以下,所以太阳能照射到的地方其实是河流的北面。 故有“山南水北谓之阳,山北水南谓之阴”的说法。在我国历史上,很多地名及地理表述都与此关系密切,如江阴、衡阳、汉阳等。 《愚公移山》 中说:“指通豫南,达于汉阴。” 其中的“汉阴”是指汉水的南岸。 “泰山之阳,汶水西流;其阴,济水东流”(姚鼐《登泰山记》)、“所谓华山洞(南宋王象之《舆地纪胜》写为‘华阳洞’。 看正文下句,应为‘华阳洞’)者,以其乃华山之阳名之也”
学生在小学阶段已经学过一定数量的古代诗歌,以启发学生的形象思维为主,重在理解诗歌大意,在此基础上进行朗读和背诵,对诗歌的思想感情的体会和艺术手法的学习涉及较少。初中阶段则要求在此基础上兼顾抽象思维的培养,在进一步激发学生对古代诗歌兴趣的前提下,引导学生初步欣赏古代诗歌,培养初步赏读诗歌的能力。本课是初中阶段第一次集中学习古代诗歌,所选的四首诗歌文质兼美。学习这四首古代诗歌,不仅可以提高学生对身边自然之景的感受力,还有利于培养学生健康向上的精神品格和生活情趣。基于学生的实际能力,也考虑到保护学生学习古代诗歌时的热情,本课设计对学生欣赏诗歌没有提出过高的要求,对学习诗歌时常提到的“意象”“意境”也少有提及。设计中继承了小学阶段朗读和背诵的优良习惯,以诵读贯穿教学始终。同时,在教学中还有意识地增加了一些古代诗歌的常识,如体裁、节奏和韵律等,并极力引导学生用“知人论世”的方法对诗歌情感与内涵有相对深层次的理解,以期望学生能在现有的能力层级上,最大限度地浸润于古典作品中,受到潜移默化的熏陶感染。
文中三次写到“看花”,有什么作用?第一次写“看花”是春天,母亲提议去北海看花,想让“我”在盛开的春花中感受生命的美好,重新扬起生活的风帆;第二次写“看花”是秋天,母亲央求“我”去北海看菊花,她想在所剩不多的日子里陪“我”去看看象征生命力的菊花,渴望“我”从绝望中走出来;第三次写“看花”是在秋天,“我”和妹妹去看花,实现了母亲临终的愿望。菊花象征作者对生命的渴望与眷恋。作者之所以浓墨重彩地写菊花,恰恰是对母亲生前那句“好好儿活”的深情解读,进一步深化了主题。三次看花,串起了人物的情感轨迹,让我们体会到“看花”已不仅仅是看菊花,而是象征着母亲的人生信念:无论命运怎样,人生如何,都要活得坚韧,活出尊严,活出生命的价值。“好好儿活”——是对瘫痪儿子与未成年女儿的深深期待,这里的母爱也不仅仅是生活中的关心爱护,更是母亲博大的胸怀和人生信念。
【设计亮点】本次教学设计主要对学生进行审美阅读的启蒙训练,让学生在阅读中感受、联想和思考,运用“自主、合作、探究”的学习方式,品味文章语言“举轻若重”的特点及对称之美,在朗读中揣摩体会,力求让学生读出文章的情味和韵味,培养学生对语言文字之美、情感意境之美的体验。语言的学习、情感的体验远远不是一篇课文所能完成的,所以在教学设计中,努力把学生的关注点和思考点引向更广阔的空间。其一是希望学生在课堂教学中获得对家庭的理性认识,能够把自己的阅读兴趣调动起来;其二是引导学生把社会生活作为自己学习的内容。围绕亲情,教师在与学生共同学习的过程中引导他们发现并且将亲情作为思维的一个载体,启发学生对家庭、人生与社会进行思考,培养学生对家庭、社会的责任感和使命感。
课件出示:杞国有个人担忧天会崩塌地会陷落,自己无处容身,以至于整天睡不好觉,吃不下饭。另外又有一个人为这个杞国人的担心而担心,就去开导他,说:“天,不过是积聚的气体罢了,没有一个地方没有气的。你一举一动,一呼一吸,整天都在天空里活动,怎么还担心天会塌下来呢?”那个人说:“天如果真的是积聚的气体,那日月星辰不就会掉下来吗?”开导他的人说:“日月星辰也是气积聚的东西中那些能发光的,即使掉下来,也不会有什么伤害。”那个人又说:“地陷下去怎么办?”开导他的人说:“地不过是堆积的土块罢了,填满了各个地方,没有一个地方是没有土块的,你踏步行走,整天都在地上活动,怎么还担心地会陷下去呢?”那个杞国人放心了,非常高兴;开导他的人也放心了,非常高兴。5.品赏人物,探究寓意(1)故事中的“杞人”和“晓之者”给你留下了怎样的印象?请结合课文中人物描写的语言,将你的评价批注在课文中。
提起了母亲,朱德将军满脸温情和悲痛。生他的时候,母亲不过二十刚过的年龄。她比一般妇女要高大一些,强壮一些,裤子和短褂上,左一块右一块都是补丁,两只手上突显着粗粗的血管,由于操劳过度,面色已是黝黑,蓬蓬的头发在后颈上挽成一个发髻,两只大大的褐色眼睛里充满了贤惠,充满了忧愁。(摘自史沫特莱《伟大的道路》)毛泽东写给朱德母亲的挽联毛泽东曾给朱德的母亲写了一副挽联:“为母当学民族英雄贤母,斯人无愧劳动阶级完人。”毛泽东在这副挽联中高度赞扬了朱德母亲的高尚品质,高度评价了他的革命战友朱德的革命精神。上联,“为母”是指做母亲。是的,母亲是儿女的第一任老师。那么,怎样才能做一个合格的母亲呢?毛泽东接下来告诉人们“当学民族英雄贤母”,告诉天下所有做母亲的人,要学习民族英雄——朱德贤惠的母亲。上联的重点在于赞子,既悼母又赞子,一语双关。
一提到朱自清,大家脑海里闪现出的便是《荷塘月色》《背影》《匆匆》等美文。位于昆明司家营的朱自清旧居,这座“一颗印”老宅不仅承载着七十多年前以朱自清为代表的清华文科研究所师生的家国情怀,也记录着朱自清那些不为人知的故事。这些故事,将撕开朱自清身上“散文家”“诗人”“学者”“民主战士”的标签,让大家看到一个不一样的朱自清!“时尚达人”朱自清1942年冬天,昆明天气格外寒冷,如何温暖过冬成了朱自清头疼的大问题。身上的旧皮袍已经缝补了许多次,早已抵挡不住瑟瑟寒风。掏掏口袋,发现生活费都够呛,更不要说缝制新棉袍,于是朱自清做了一个决定。趁着龙头街赶街的日子,朱自清给自己挑了一件赶马人穿的、制作粗糙、价格便宜的毡披风。朱自清一毡多用,出门时,他就将毡披风披在身上御寒,晚上睡觉时,毡披风一脱就当被褥。朱自清上街,里边穿西装,外边穿赶马人的毡披风,给联大师生留下了深刻的印象。这件毡披风由于太过显眼,被誉为“联大三绝”,也成了他教授生活清贫的标志,以至于后来多次出现在回忆朱自清的朋友的笔下。
五、高山仰止,景行行止资料助读1:课件出示:居里夫人长期在没有防护措施的恶劣条件下进行科学研究,长期接触放射性物质,致使有害物质严重危害了她的身体健康,最终得了恶性贫血白血病。镭射线在无声地侵蚀着居里夫人的肌体,她美丽而健康的容貌在悄悄消逝,逐渐变得眼花耳鸣,全身无力。师:重病中的居里夫人,在你们心中、在人们心中还美丽吗?资料助读2:我对她的人格的伟大愈来愈感到钦佩。她的坚强,她的意志的纯洁,她的律己之严,她的客观,她的公正不阿的判断——所有这一切都难得地集中在一个人的身上。——爱因斯坦《悼念玛丽·居里》师小结:镭有美丽的颜色,居里夫人的人格、精神更是具有美丽的颜色,而且这种美将是永恒的!希望你们永远记住美丽的居里夫人,永远记住居里夫人美好而崇高的人格!【设计意图】资料助读+追问,将学生对人物精神品质的理解引向了更深的层次。
中国的拱桥的历史可追溯到东汉时期,至今已有一千八百多年。中国的拱桥别具一格,造型优美,曲线圆润,形式多样,世界罕见。拱桥按照建筑材料分为石拱桥、砖拱桥和木拱桥,其中较为常见的是石拱桥。拱桥又分为单拱、双拱、多拱,拱的多少根据河面的宽度而定。多拱桥一般正中间的拱较大,两边的拱略小。根据拱的形状,又分五边、半圆、尖拱、坦拱。桥面上铺板,桥边有栏杆。单孔拱桥的拱形呈抛物线的形状,如北京颐和园的汉白玉石桥玉带桥。多孔拱桥适于跨度较大的宽广水面,常见的多为三、五、七孔,以奇数为多,偶数较少。当多孔拱桥某个孔的主拱受荷时,能通过桥墩的变形或拱上结构的作用把荷载由近及远地传递到其他孔主拱上去,这样的拱桥称为连续拱桥,简称“联拱”。如建于唐代元和年间的古桥苏州宝带桥,桥下共有53个孔相连,桥孔之多,结构之精巧,为中外建桥史上所罕见。
故最少由9个小立方体搭成,最多由11个小立方体搭成;(3)左视图如右图所示.方法点拨:这类问题一般是给出一个由相同的小正方体搭成的立体图形的两种视图,要求想象出这个几何体可能的形状.解答时可以先由三种视图描述出对应的该物体,再由此得出组成该物体的部分个体的个数.三、板书设计视图概念:用正投影的方法绘制的物体在投影 面上的图形三视图的组成主视图:从正面得到的视图左视图:从左面得到的视图俯视图:从上面得到的视图三视图的画法:长对正,高平齐,宽相等由三视图推断原几何体的形状通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系.通过具体活动,积累学生的观察、想象物体投影的经验,发展学生的动手实践能力、数学思考能力和空间观念.
同理,图③中,三角形的三边长分别为2,5,3;同理,图④中,三角形的三边长分别为2,5,13.∵21=22=105=2,∴图②中的三角形与△ABC相似.方法总结:(1)各个图形中的三角形均为格点三角形,可以根据勾股定理求出各边的长,然后根据三角形三边的长度是否成比例来判断两个三角形是否相似;(2)判断三边是否成比例,可以将三角形的三边长按大小顺序排列,然后分别计算他们对应边的比,最后由比值是否相等来确定两个三角形是否相似.三、板书设计相似三角形的判定定理3:三边成比例的两个三角形相似.从学生已学的知识入手,通过设置问题,引导学生进行计算、推理和归纳,提高分析问题和解决问题的能力.感受两个三角形相似的判定定理3与全等三角形判定定理(SSS)的区别与联系,体会事物间一般到特殊、特殊到一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生与他人交流、合作的意识和品质.
故线段d的长度为94cm.方法总结:利用比例线段关系求线段长度的方法:根据线段的关系写出比例式,并把它作为相等关系构造关于要求线段的方程,解方程即可求出线段的长.已知三条线段长分别为1cm,2cm,2cm,请你再给出一条线段,使得它的长与前面三条线段的长能够组成一个比例式.解析:因为本题中没有明确告知是求1,2,2的第四比例项,因此所添加的线段长可能是前三个数的第四比例项,也可能不是前三个数的第四比例项,因此应进行分类讨论.解:若x:1=2:2,则x=22;若1:x=2:2,则x=2;若1:2=x:2,则x=2;若1:2=2:x,则x=22.所以所添加的线段的长有三种可能,可以是22cm,2cm,或22cm.方法总结:若使四个数成比例,则应满足其中两个数的比等于另外两个数的比,也可转化为其中两个数的乘积恰好等于另外两个数的乘积.
解:设需要剪去的小正方形边长为xcm,则纸盒底面的长方形的长为(19-2x)cm,宽为(15-2x)cm.根据题意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法总结:列方程最重要的是审题,只有理解题意,才能恰当地设出未知数,准确地找出已知量和未知量之间的等量关系,正确地列出方程.在列出方程后,还应根据实际需求,注明自变量的取值范围.三、板书设计一元二次方程概念:只含有一个未知数x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c为常数,a≠0)的形式一般形式:ax2+bx+c=0(a,b,c为常 数,a≠0),其中ax2,bx,c 分别称为二次项、一次项和 常数项,a,b分别称为二次 项系数和一次项系数本课通过丰富的实例,让学生观察、归纳出一元二次方程的有关概念,并从中体会方程的模型思想.通过本节课的学习,应该让学生进一步体会一元二次方程也是刻画现实世界的一个有效数学模型,初步培养学生的数学来源于实践又反过来作用于实践的辩证唯物主义观点,激发学生学习数学的兴趣.
∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根据勾股定理的逆定理可知△ABC为直角三角形.方法总结:根据一元二次方程根的情况,利用判别式得到关于一元二次方程系数的等式或不等式,再结合其他条件解题.三、板书设计用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步骤①化为一般形式②确定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判别式经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解求根公式的基础.通过对求根公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.体会数式通性,感受数学的严谨性和数学结论的确定性.提高学生的运算能力,并养成良好的运算习惯.
∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点二:正方形、菱形、矩形与平行四边形之间的关系填空:(1)对角线________________的四边形是矩形;(2)对角线____________的平行四边形是矩形;(3)对角线__________的平行四边形是正方形;(4)对角线________________的矩形是正方形;(5)对角线________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法总结:从对角线上分析特殊四边形之间的关系应充分考虑特殊四边形的性质与判别,防止混淆.菱形、矩形、正方形都是平行四边形,且是特殊的平行四边形,特殊之处在于:矩形是有一个角为直角的平行四边形;菱形是有一组邻边相等的平行四边形;而正方形是兼具两者特性的更特殊的平行四边形,它既是矩形,又是菱形.
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
探索1:上节我们列出了与地毯的花边宽度有关的方程。地毯花边的宽x(m),满足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花边的宽度x吗?(1)x可能小于0吗?说说你的理由;_____________________________.(2)x可能大于4吗?可能大于2.5吗?为什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花边的宽x(m)是多少吗?还有其他求解方法吗?与同伴交流。探索2:梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑动距离x(m)的大致范围吗?(2)x的整数部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___进一步计算x x2+12x-15 所以 ___<x<___因此x 的整数部分是___,十分位是___.三、当堂训练:完成课本34页随堂练习四、学习体会:五、课后作业
三、课堂检测:(一)、判断题(是一无二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a为常数) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空题.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.2.如果方程ax2+5=(x+2)(x-1)是关于x的一元二次方程,则a__________.3.关于x的方程(m-4)x2+(m+4)x+2m+3=0,当m__________时,是一元二次方程,当m__________时,是一元一次方程。四、学习体会:五、课后作业
解析:熟记常见几何体的三种视图后首先可排除选项A,因为长方体的三视图都是矩形;因为所给的主视图中间是两条虚线,故可排除选项B;选项D的几何体中的俯视图应为一个梯形,与所给俯视图形状不符.只有C选项的几何体与已知的三视图相符.故选C.方法总结:由几何体的三种视图想象其立体形状可以从如下途径进行分析:(1)根据主视图想象物体的正面形状及上下、左右位置,根据俯视图想象物体的上面形状及左右、前后位置,再结合左视图验证该物体的左侧面形状,并验证上下和前后位置;(2)从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.在得出原立体图形的形状后,也可以反过来想象一下这个立体图形的三种视图,看与已知的三种视图是否一致.探究点四:三视图中的计算如图所示是一个工件的三种视图,图中标有尺寸,则这个工件的体积是()A.13πcm3 B.17πcm3C.66πcm3 D.68πcm3解析:由三种视图可以看出,该工件是上下两个圆柱的组合,其中下面的圆柱高为4cm,底面直径为4cm;上面的圆柱高为1cm,底面直径为2cm,则V=4×π×22+1×π×12=17π(cm3).故选B.