教学过程:一、组织教学。让学生在京剧的音乐中进入教室(动作可自由。)二、导入。1、老师让学生唱一唱上一节课的《唱脸谱》并且说出歌曲中有几种脸谱及各种脸谱的特点(多媒体同时播放一段京剧,让学生注意京剧中的脸谱、行头、人物的动作、表情等。)2、老师、同学们:你们对京剧知道多少?(学生畅所欲言)京剧是中国的国粹。特别是脸谱、服装等,是中国物质文化的宝贵遗产。你们喜欢吗?三、欣赏感受。(一)《包龙图打坐在开分那府》。1、老师出示脸谱问:同学们刚才你们看到这个脸谱吗?代表什吗?(正义,铁面无私)常用来代表谁?(包公、张飞。)2、师:对他们都是正义的象征,今天咱们讲一个关于包公的故事。(先简介一下《铡美案》的剧情,激起同学的愤慨。师:咱们先看一下包公是怎样对待忘恩负义的陈世美的?3、大屏幕放录音唱段,老师提出问题,哪部分情绪激昂,哪部分节奏舒缓。(先照对歌词,有助于学生对唱词的理解。)放录音第二遍,师生互填表。4、拓展延伸。让学生舒一下情怀,假如你遇到如此情况,是刚正不阿主持正义,还是顺水推舟做个人情?(学生自由议论,热烈发言。)
教学过程:(一)导入新课。1、欣赏歌曲《唱脸谱》。设问:刚才我们听到的歌曲与以往听到的歌曲有什么不同?你在什么地方听到过京剧?你知道哪些关于京剧的知识?导入:京剧是我国的国粹,迄今已有200多年的历史。它是第一个走向国际舞台的,代表中华民族的表演艺术。所以我认为作为中国人,有必要了解一下自己的国宝——我们的京剧艺术。(二)新课教学。1、欣赏京剧《智斗》(现代京剧《沙家浜》选段)。a。简介人物身份、故事情节后听赏《智斗》。b。这三个人物之间的关系?这三个人物在剧中的性格形象分别有什么特点?(1)唱腔:西皮。反西皮 :是[西皮]声腔的一种曲调,它是从[西皮]正调中演生出来的。是正[西皮]的反调,即向下四度发展转化而成。[反西皮]和[西皮]一样大多是"眼起板落",开唱在眼上,末句落在板上。请注意:[反西皮]的下句落音往往是低音5和中音1,和[西皮]相比,音调较低沉,常常用于表现人物内心思索的过程。(2)板式:摇板(紧拉慢唱)。流水板(一拍子):流水板就是一种形似流水一样的板式,节奏比较快,但不是像波涛滚滚的长江那样跌宕起伏,而是像水流平缓的涓涓小溪,用快而不急的节奏,把人物的内心感情抒发出来,多用于对事物的叙述和自我表白。比流水板节奏更加快的,则是“快板”。快板用于剧中人物异常激动,或事态急剧变化,或矛盾瞬间变得激烈时,往往把剧情引向高潮。
教学过程一、组织教学师生问好!二、导入新课观察鳟鱼图片,由图片导入课题。师:同学们请看图片,有没有同学知道是什么鱼?(鳟鱼,很有价值的垂钓鱼,可食用,全世界只有十多种。)我们今天欣赏的音乐与这种鱼有关,是一首以鳟鱼来命名的音乐。有同学可能会说:“谁会去描写这种看起来并不漂亮甚至还有些凶的鱼呢?”优秀的艺术家,任何素材都可以来来创作,我们现在开始学习《鳟鱼》。三、新课教学1、认识舒伯特。舒伯特(1797年1月31日-1828年11月19日),奥地利作曲家,出生于维也纳。自幼随父兄学习小提琴和钢琴。舒伯特的一生是在贫困中度过的,艰难的生活使他过早地离开人世。然而,舒伯特却为人类留下了大量的不朽名作,被称为“歌曲之王”。在短短31年的生命中,创作了600多首歌曲,18部歌剧、歌唱剧和配剧音乐,10部交响曲,19首弦乐四重奏,22首钢琴奏鸣曲,4首小提琴奏鸣曲以及许多其他作品。
教学过程:一、导入同学们,你们知道“甲壳虫”吗?The Beatles(披头士,又译甲壳虫乐队)毫无疑问是流行音乐界历史上最伟大,最有影响力,最为成功的乐队。The Beatles对于流行音乐的革命性的发展与影响力无人可出其右,对于世界范围内摇滚的发展做出了非常巨大的贡献,影响了自60年代以后的数代摇滚乐队的音乐和思想,直接影响了摇滚乐的变革和发展,在英国,披头士乐队更是影响了60年代至今几乎每一支乐队的形成和发展。而乐队中四名伟大的音乐家,特别是约翰列侬和保罗麦卡特尼,对于世界各个角落的后辈摇滚歌手及音乐创作者们的影响持续至今。二、新课教学1、播放《昨日》初次聆听,谈谈你的感受。2、简介歌曲来源及故事背景歌曲《Yesterday》创作过程据麦卡特尼忆述,歌曲旋律的灵感来自梦中,一觉醒来后他立即走到钢琴前弹奏出来,并以录音机记录下来。歌曲一经发行,就引起了强烈的反响,优美的旋律,隽永的歌词,刻画出每个人心灵深处那失落在时间中的影子。不论文化背景、社会地位、审美取向,甚至是否爱好音乐,几乎人人都会被这首歌打动,它真正做到了雅俗共赏。
教材分析:1、作品分析:《鳟鱼》是舒伯特1817年根据诗人舒巴尔特的浪漫诗创作的一首艺术歌曲。它以叙述式的手法向人们揭示了善良和单纯往往被虚诈和邪恶所害,借对小鳟鱼不幸遭遇的同情,抒发了作者对自由的向往和对迫害者的憎恶,是一首寓意深刻的作品。2、作者介绍:舒伯特(1797---1828)奥地利作曲家,欧洲浪漫乐派的代表人物之一。由于生活贫困又不愿依附于权贵,在他的作品中常常流露出苦闷和压抑的情绪,年仅31岁就离开了人世。舒伯特的创作体裁非常广泛,包括歌剧、交响乐、重奏乐、奏鸣曲等,其中歌曲是舒伯特有特殊成就的创作领域,被誉为“歌曲之王”。3、作品结构图(略)4、重奏乐:又称之为室内乐,17世纪起源于意大利。近代室内乐指每一声部都由一件乐器演奏的小型合奏曲。按声部人数的多少可分为“二重奏”、“三重奏”等,也可按演奏的乐器分为“铜管重奏”、“木管重奏”等,其中最常见的形式是弦乐四重奏,分别由两把小提琴、一把中提琴和一把大提琴组成。5、变奏曲式:由代表基本乐思的音乐主题及若干变奏所构成的曲式,称为变奏曲式,变奏中最初的呈现并作为以后变奏所依据的原型部分,称为变奏的主题,其后的各次变奏依次称为变奏一、变奏二、变奏三……结构图式为A+A¹+A²+A³……6、常见变奏手法:改变演奏、演唱方式:加入各种装饰音;改变音色、速度、力度、节奏、调号等。
在探究估算方法的时候,教师要注重适时的引导,以免让学生无从下手.在教学过程中一定要让学生体会估算的实用价值,了解到“数学既来源与生活,又回归到生活为生活服务”.(二)课堂评价的一些思考在教学中要多鼓励学生用自己的语言表达他们的想法,在估算的过程中多给予适当的引导和评价,让学生逐步把握估算的方法,找到解决问题的信心.比如对“画能挂上去吗”这个问题情境,学生可能提出不同的看法,有些学生可能认为可以挂上去,因为人还有身高,完全可以弥补梯子稳定摆放的高度和挂画位置的高度之间的差距,有些学生可能认为,人不可能爬到梯子的顶部,加上人如果本来比较矮,画就不能挂上去等等想法,教师都应该给予肯定,这样才能激发学生思考问题的热情,调动学生探究问题的积极性.作为教师,一定要尊重学生的个体差异,满足多样化的学习需要,鼓励探究方式、表达方式和解题方法的多样化.
2.法解二元一次方程组,是提升学生求解二元一次方程的基本技能课,在例题的设置上充分体现化归思想.2.在学习二元一次方程组的解法中,关键是领会其本质思想——消元,体会“化未知为已知”的化归思想.因而在教学过程中教师通过对问题的创设,鼓励学生去观察方程的特点,在过手训练中提高学生的解答正确率和表达规范性,提升学生学会数学的信心,激发学习数学的兴趣.3.通过精心设计的问题,引导学生在已有知识的基础上,自己比较、分析得出二元一次方程组的解法,在巩固训练活动中,加深学生对“化未知为已知”的化归思想的理解.特别是如何由代入消元法到加减消元法,过渡自然。让学生深刻的体会到二元一次方程是一元一次方程的拓展,二元一次方程组又要通过“消元”,转化为一元一次方程求解,这样的转化,不仅有助于学生掌握知识、技能和方法,提高学习效率,而且还加深了对数学中通性和通法的认识,体会学习数学和研究数学的规律,提升数学思维能力.
2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业习题4.8Ⅴ.活动与探究要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618= 1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试 验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割 点 ;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.●板书设计
2、某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3、y是x的反比例函数,下表给出了x与y的一些值: (1)写出这个反比例函数的表达式;(2)根据表达式完成上表。教师巡视个别辅导,学生完毕教师给予评估肯定。II巩固练习:限时完成课本“随堂练习”1-2题。教师并给予指导。七、总结、提高。(结合板书小结)今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成 (k为常数,k≠0)同时要注意几点::①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当 可写为 时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应 的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
(2)相似多边形的对应边的比称为相似比;(3)当相似比为1时,两个多边形全等.二、运用相似多边形的性质.活动3 例:如图27.1-6,四边形ABCD和EFGH相似,求角 的大小和EH的长度 .27.1-6教师活动:教师出示例题,提出问题;学生活动:学生通过例题运用相似多边形的性质,正确解答出角 的大小和EH的长度 .(2人板演)活动41.在比例尺为1﹕10 000 000的地图上,量得甲、乙两地的距离是30 cm,求两地的实际距离.2.如图所示的两个直角三角形相似吗?为什么?3.如图所示的两个五边形相似,求未知边 、 、 、 的长度.教师活动:在活动中,教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的掌握情况.三、回顾与反思.(1)谈谈本节课你有哪些收获.(2)布置课外作业:教材P88页习题4.4
[师]同学们想一想,你同父母一起去商店买衣服时,衣服上的号码都有哪些,标志是什么?[生]我看到有些衣服上标有M、S、L、XL、XXL等号码.但我不清楚代表的具体范围.适合什么人穿.但肯定与身高、胖瘦有关.[师]这位同学很善动脑,也爱观察. S代表最小号,身高在150~155 cm的人适合穿S号.M号适合身高在155~160 cm的人群着装…….厂家做衣服订尺寸也并不是按所有人的尺寸定做,而是按某个范围分组批量生产.如何确定组距与组数呢?分组组数的确定,不仅与数据多少有关,还与数据的取值情况有关.在实际决定组数时,常有一个尝试过程:先定组距,再计算出相应的组数.看看这个组数是否大致符合确定组数的经验法则.在尝试中,往往要比较相应于几个组距的组数,然后从中选定一个较为合适的组数.我们一起看下表:小亮的做法.
4、 填表:相反数 绝对值21 0 -0.75 5、 画一条数轴,在数轴上分别标出绝对值是6 , 1.2 , 0 的数6、 计算:(1) (2) 五、探究学习1、某人因工作需要租出租车从A站出发,先向南行驶6 Km至B处,后向北行驶10 Km至 C处,接着又向南行驶7 Km至D处,最后又向北行驶2 Km至E处。请通过列式计算回答下列两个问题:(1) 这个人乘车一共行驶了多少千米?(2) 这个人最后的目的地在离出发地的什么方向上,相隔多少千米 ?2、写出绝对值小于3的整数,并把它们记在数轴上。六、小结一头牛耕耘在一块田 地上,忙碌了一整天,表面上它在原地踏步,没有踏出这块土地,但我们说,它付出了艰辛和汗水,因为它所走过 的距离之和,有时候我们是无法 想象的。这就是今天所学的绝对值的意义所在。所以绝对值是不考虑方向意义时的一种数值表示。七、布置作业做作业本中相应的部分。
1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识. 教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.
本节课采取了开门见山的切入方法,旨在激发学生的求知欲望,在学生已有的认识基础上,让学生经历了“观察、思考、探究、实践”的过程。在总结出同类项定义后,没有按通常的做法,即直接分析定义中的两个条件,强调两个条件缺一不可,而是通过一组练习,让学生在具体问题中体会定义中的两个条件缺一不可,使他们先有较强烈的感性认识,而后,分析定义中的两个条件,这样会给学生留下更深刻、更牢固的印象.这样的设计既符合学生的年龄特征,也符合“从感性到理性、从具体到抽象”的认知规律。数学不应只强调抽象、严谨,这样不但会更显数学教学的枯燥,而且会使学生在学习中出现畏难情绪,甚至丧失学习数学的兴趣。通过本节课的教学,我认为还存在一些不足,一部分学生的学习能力还有待于进一步培养。如:学习同类项的概念时,当把字母顺序进行改变后,部分学生就认为不是同类项。
光年是表示较大距离的一个单位, 而纳米(nanometer)则是表示微小距离的单位。1纳米= 米,即1米= 纳米。我们通常使用的尺上的一小格是一毫米(mm),1毫米= 米。可见,1毫米= 纳米,容易算出,1纳米相当于1毫米的一百万分之一。可想而知,1纳米是多么的小。超微粒子的大小一般在1~100 纳米范围内,故又称纳米粒子。纳米粒子的尺寸小,表面积大,具有高度的活性。因此,利用纳米粒子可制备活性极高的催化剂,在火箭固体燃料中掺入铝的纳米微粒,可提高燃烧效率若干倍。利用铁磁纳米材料具有很高矫顽力的特点,可制成磁性信用卡、磁性钥匙,以及高性能录像带等 。利用纳米材料等离子共振频率的可调性可制成隐形飞机的涂料。纳米材料的表面积大,对外界环境(物理的和化学的)十分敏感,在制造传感器方面是有前途的材料,目前已开发出测量温度、热辐射和检测各种特定气体的传感器。在生物和医学中也有重要应用。纳米材料科学是20世纪80年代末诞生并正在崛起的科技新领域,它将成为跨世纪的科技热点之一。
第五环节:课堂小结内容:师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”; 解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值.即求得了方程组的解.目的:鼓励学生通过本节课的学习,谈谈自己的收获与感受,加深对 “温故而知新” 的体会,知道“学而时习之”.设计效果:学生能够在课堂上畅所欲言,并通过自己的归纳总结,进一步巩固了所学知识.第六环节:布置作业课本习题5.2教学设计反思1.引入自然.二元一次方程组的解法是学习二元一次方程组的重要内容.教材通过上一小节的实际问题,比较一元一次方程的列法和解法,从而自然引入二元一次方程组的代入消元解法.
1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数 的平方等于 ,即 ,那么这个正数 就叫做 的算术平方根,”的“正数 ”,即被开方数是正的,由平方的意义, 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.
第一环节感受生活中的情境,导入新课通过若干图片,引导学生感受生活中常常需要确定位置.导入新课:怎样确定位置呢?——§3.1确定位置。第二环节分类讨论,探索新知1.温故启新(1)温故:在数轴上,确定一个点的位置需要几个数据呢? 答:一个,例如,若A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置。总结得出结论:在直线上, 确定一个点的位置一般需要一个数据.(2)启新:在平面内,又如何确定一个点的位置呢?请同学们根据生活中确定位置的实例,请谈谈自己的看法.2.举例探究Ⅰ. 探究1(1)在电影院内如何找到电影票上指定的位置?(2)在电影票上“6排3号”与“3排6号”中的“6”的含义有什么不同?(3)如果将“6排3号”简记作(6,3),那么“3排6号”如何表示?(5,6)表示什么含义? (4) 在只有一层的电影院内,确定一个座位一般需要几个数据?结论:生活中常常用“排数”和“号数”来确定位置. Ⅱ. 学有所用(1) 你能用两个数据表示你现在所坐的位置吗?
[教学目标]1、 理解并掌握正弦、余弦的含义,会在直角三角形中求出某个锐角的正弦和余弦值。2、能用函数的观点理解正弦、余弦和正切。[教学重点与难点] 在直角三角形中求出某个锐角的正弦和余弦值。[教学过程] 一、情景创设1、问题1:如图,小明沿着某斜坡向上行走了13m后,他的相对位置升高了5m,如果他沿着该斜坡行走了20m,那么他的相对位置升高了多少?行走了a m呢?2、问题2:在上述问题中,他在水平方向又分别前进了多远?二、探索活动1、思考:从上面的两个问题可以看出:当直角三角形的一个锐角的大小已确定时,它的对边与斜边的比值________;它的邻边与斜边的比值________。(根据是__________________。)2、正弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的对边a与斜边c的比叫做∠A的______,记作________,即:sinA=________=________.3、余弦的定义 如图,在Rt△ABC中,∠C=90°,我们把锐角∠A的邻边b与斜边c的比叫做∠A的______,记作=_________,即:cosA=______=_____。(你能写出∠B的正弦、余弦的表达式吗?)试试看.___________.
议一议数轴上的两个点,右边点表示的数与左边点表示的数有怎样的大小关系?数轴上表示的数,▁▁▁边的总比▁▁▁边的大;正数▁▁▁0,负数▁▁▁0,正数▁▁▁负数。练习:比较大小:-3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是数轴?怎样画数轴。(2) 有理数与数轴上的点之间存在怎样的关系?(3) 什么是相反数?怎样求一个数的相反数?(4) 如何利用数轴比较有理数的大小?5、随堂练习:(1)下列说法正确的是( ) A、 数轴上的点只能表示有理数B、 一个数只能用数轴上的一个点表示C、 在1和3之间只有2D、 在数轴上离原点2个单位长度的点表示的数是2 (2)语句:①-5是相反数?②-5与+3互为相反数③-5是5的相反数④-5和5互为相反数⑤0的相反数是0⑥-0=0。上述说法中正确的是( )