解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.
答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
(3)若要满足结论,则∠BFO=∠GFC,根据切线长定理得∠BFO=∠EFO,从而得到这三个角应是60°,然后结合已知的正方形的边长,也是圆的直径,利用30°的直角三角形的知识进行计算.解:(1)FB=FE,PE=PA;(2)四边形CDPF的周长为FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假设存在点P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法总结:由于存在性问题的结论有两种可能,所以具有开放的特征,在假设存在性以后进行的推理或计算.一般思路是:假设存在——推理论证——得出结论.若能导出合理的结果,就做出“存在”的判断,若导出矛盾,就做出“不存在”的判断.
教学目标:1、理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。2、了解计算一个锐角的正切值的方法。教学重点:理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值。教学难点:计算一个锐角的正切值的方法。教学过程:一、观察回答:如图某体育馆,为了方便不同需求的观众设计了多种形式的台阶。下列图中的两个台阶哪个更陡?你是怎么判断的?图(1) 图(2)[点拨]可将这两个台阶抽象地看成两个三角形答:图 的台阶更陡,理由 二、探索活动1、思考与探索一:除了用台阶的倾斜角度大小外,还可以如何描述台阶的倾斜程度呢?① 可通过测量BC与AC的长度,② 再算出它们的比,来说明台阶的倾斜程度。(思考:BC与AC长度的比与台阶的倾斜程度有何关系?)答:_________________.③ 讨论:你还可以用其它什么方法?能说出你的理由吗?答:________________________.2、思考与探索二:
解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试.在课堂上,力求体现学生的主体地位,把课堂交给学生,让学生在动口、动手、动脑中学数学
(4)验算师:小数加减计算很轻易出错,你有什么方法检验计算的结果?(假如有困难,教师再提示一下)(三)巩固应用、内化提高 刚才的学生刚刚体会到了成功的喜悦,在此基础上,我安排了三个层次的练习。1. 基本练习,出几道直接写得数的一位小数加减法的题,让学生掌握本课的基础知识。2. 综合练习,是课后做一做1,巩固新知识,发展学生思维的机智性与灵活性。3. 提高练习,课后做一做2这是小数加减法的两步应用题,这样既培养了学生运用知识的能力,有培养了学生的创新能力。【设计意图】这样的练习的设计有密度,有坡度,形式多样,而且具有层次性。不仅巩固了学生的计算能力,而且还培养了学生的应用能力。在这个环节中,还让学生开展了自我评价、生生互评等。大大提高了学生学习的积极性。(四)回顾整理,反思提升通过今天的学习,你都有哪些收获?
一、教材分析:《名数的改写》是四年级下册小数的意义和性质的内容。该内容是在学生已经学习了利用小数点位置移动引起小数的大小变化规律的基础上进行教学的。本信息窗呈现的是一只天鹅从出生到长大体重变化的情况。图中用文字标出了具体的变化数据。主要通过引导学生解答天鹅体重变化的问题,让学生体会到单位不相同,必须改写成相同的单位,展开对名数改写知识的学习。二、教学目标根据上述对教材的分析,考虑到学生已有的认知结构和心理特征,我确立了本课的教学目标为:知识与技能方面:会利用移动小数点的位置来进行名数改写。理解知识间联系,提高学生运用所学知识解决问题的能力。过程与方法方面:利用小数点位置移动引起小数大小变化的规律和名数改写的基本方法,引导学生进行知识迁移,从而掌握利用小数点的位置移动进行名数改写的方法。
比较2和3两个算式:这两个算式的不同?请学生具体解释一下270-180为什么要用括号?让学生体会到解决问题的思路不同,解决方法也不同,计算的步数也是不同的。(再请学生分别说说这两个算式的计算过程,每一步的含义。)小结:括号是用来改变运算顺序的。当你列出的综合算式的运算顺序与实际需要的运算顺序不相符时,就用括号来改变运算顺序。比如(擦去(270-180)÷30中的括号)这样的算式中先算什么?按照混合运算顺序的规定是不能先算270-180的,要想先算这部分就要用括号把这一步括起来。这个算式才正确表示了我们解决问题的方法步骤。(设计意图:在这个环节中,在自主探索的基础上,教师给学生提供充分表达自己见解的机会,阐述自己得出的结论探究过程及疑难问题。然后根据学生反馈的信息,组织、引导学生通过个体发言、小组讨论、辩论等多种形式进行辨析评价,使学生的认知结构更加稳定和完善。)
一 说教材运算定律和简便计算的单元复习是人教版第八册第三单元内容,属于“数与代数”领域。本节内容是在学生学习了运算定律(加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律)以及基本的简便计算方法(连减、连除)基础上进行的整理复习课。二、说教学目标及重难点1、通过复习、梳理,学生能熟练掌握加法、乘法等运算定律,能运用运算定律进行简便计算。2、培养学生根据实际情况,选择算法的能力,能灵活地解决现实生活中的简单实际问题。教学重点:理解并熟练掌握运算定律,正确进行简便计算。教学难点:根据实际,灵活计算。三、说教法学法根据教学目标及重难点,采用小组合作、自主探究、动手操作的学习方式。四、说教学过程
1、结合具体情境,体会生活中变化的量,感觉变化的量之间的关系,认识变化特征。2、通过自主探究,合作交流,在活动过程中培养学生用多种方法解决问题的能力,进一步发展学生观察、比较、概括等能力,渗透分类的数学思想。3、经历数学活动的过程,体验用多种方法研究问题的乐趣,感觉成功的快乐,增强学好数学的信心。教材安排了多个生活情境,以表格、图像、关系式等不同方式呈现,目的是让学生通过多种方式认识变化的量的特征。因此,我确定本课的教学重点是结合具体情境,感觉变化的量之间的关系,认识变化特征。六年级的学生,抽象思维得到了一定的发展,但以前从未接触过变化的量,从之前熟悉的定向思维模式转向多向思维模式,并认识变化特征会有一定的困难。因此,我确定本课的教学难点是用多种方式认识变化的量的变化特征。本课需要教师准备多媒体课件,为学生准备学习单。
第一个板块是“脑筋急转弯”,激发学习兴趣。目的有两个:一是拉近与学生的距离,二是为本节课做铺垫。第二板块是自主探究,优化策略。这一部分内容通过“操作感悟——抽象内化——巩固应用”三个片段,使学生在教师的点拨引导下,沿以下四个步骤:“一张和两张饼的烙法(基础)→三张饼的最佳烙法(难点)→双数饼、单数饼的烙法(提升)→最佳方案、双数饼:两张两张烙;单数饼:两张两张烙+最后3张饼交叉烙(优化)进行探究。1、探索烙3张饼的最少时间是本节课的重点也是难点,优化的数学思想只能是“渗透”而不能“明透”,也就是说只能让学生在潜移默化的过程中理解,而不能仅仅靠传授。因此,本课中蓄势----为探索最佳方法打基础的方法,自认为运用得恰到好处。例如,围绕“烙2张饼最少要花6分,为什么烙1张饼与2张饼所用的时间一样多呢?你们是怎么想的?”这个问题,让学生体会烙2张饼是用足了空间,而烙1张饼浪费了空间和时间,为探索烙3张饼埋下了伏笔。
(五)课前准备: 1、铺垫:让学生和家长一起收集历代有关合理安排的故事。 2、教具准备:圆形卡片、工序卡片、记录表格和多媒体课件等。 学具准备:让学生以小组为单位制作好图形卡片和工序卡片。 二、说教法和学法 在教学方法上,为了使学生能轻松、愉快地理解优化思想,根据学生的认知特点和规律,在本课的设计中,我使用了演示法和实验法,通过课件的情境演示和实物的操作为学生创设情境,让学生独立思考,然后动手操作,互相交流,最后找出最优方案的方式组织教学。 在学法方面,我设计了一系列贴近学生生活实际和年龄特点的教学活动,在这些活动中,着重以引导学生运用自主探究、合作探究两种学习方式交替学习,让他们真正以课堂的身份参与全程。并培养他们收集数据和分析处理数据的能力。
(一)说教材本节课是在学生基本上掌握了亿以内数的读、写方法以及比较两个数的大小和把整万的数改写成用万作单位的数后,用"四舍五入"法求近似数。这部分内容不好总结,但是与过去的旧知识联系紧密。由讲故事引入课题,进而渗透旧知,由复习省略百位、千位后面的尾数求近似数,类推到省略万位后面的尾数求近似数。这样引导,有利于培养学生归纳推理的能力。(二)说教学目标1.能正确的用"四舍五入"法求近似数。2.培养学生比较分析的思维能力,养成良好的学习习惯。(三)说重难点使学生学会如何用“四舍五入”法将非整万的数改写成用“万”做单位的近似数。(四)说教法这部分知识与旧知联系比较紧密,因此,教学过程的设计,采用帮助学生回忆有关的旧知识,引导学生探索出新知识的方法,培养学生的归纳推理能力。
同时又大大地节省了教学时间,提高了课堂效率。第五个层次:尝试制作复式条形统计图教师导语:在我们的生活中经常都会用到“复式条形统计图”,下面是四年级同学参加体育活动项目的情况统计表,大家有兴趣根据其中提供的信息制作一张复式条形统计图吗?展示书119页例题3,1、让学生观察统计表,读取其中信息2、让学生根据信息补充统计图。让学生一边说,老师一边用课件演示涂色过程。对于此处教学,我们所做统计图都是提供了横轴和纵轴的,学生只需读取信息,在表格中画出相应的直条。所以难度大大降低。可以说是一种半放手的“制作过程”,同时教学中让学生说,老师演示,也是一个半放手的教与学。只是为下一环节中,学生完全有自己独立收集数据,选取颜色画直条补充统计图搭脚手架。
二、说教法从教学内容来看,统计教学以探究研讨法为主。如设计中进行下个月进货的决策时,对已有的销售数据进行统计学上的分析外,其结果能对下一步的科学决策提供依据,体现统计在实际生活中的作用。从教学对象来看,小学中年级多用引导发现法、尝试教学法。随着年龄的增长,学生对社会问题也会越来越好奇和关心,因此素材的选择加强了联系社会生活实际,如设计垃圾调查与研究等题材,潜移默化地对学生进行保护环境等社会问题任何一节数学课都是多种教学方法的综合运用,如谈话法、讲解法等的有机结合!三、说学法在教学互动过程中,引导学生探索、、交流、观察、猜测、归纳等方法,培养学生的观察能力、分析能力及合作能力。因为是统计课,课前要去收集、整理实例,为课内互相交流积累素材。四、说教学过程(一)情境创设,复习旧知学校要购买一批体育器材,现在要调查同学们对体育运动的爱好。出示402班学生的纵向单式统计图情况。之后收集、整理、绘制本班学生的统计情况。
一、学情分析《角的度量》这节课是义务教育课程标准实验教材教科书小学数学四年级上册第二单元第37~38页的内容。这是一节实践操作课。是在学生学习了直线、射线、线段和角的基础上教学的,也是学习角的分类和角的画法的基础。学生对于角的大小已有初步的体验,但一部分学生根本不认识量角器,更谈不上用量角器来测量角,而且角的大小概念也还没有完全形成,显得比较抽象,所以小学四年级的学生抽象思维虽然有一定的发展,但依然要以形象具体思维为主,并且要进一步培养学生分析、归纳、概括能力。二、教学目标教学目标,是一节课的灵魂,对整个教学活动具有导向、激励、评价的功能。依据〈〈课程标准〉〉的要求,结合本节课的重点、难点和学生的年龄特征,我制定了以下三维目标:
一、说教材:本节课是人教版义务教育课程标准实验教科书四年级数学上册第一单元《亿以内数的认识》里的例题4。本节课的内容是在数数、读、写数以及10000以内数大小比较的基础上进行教学的。教材一开始就联系生活,通过比较我国面积最大的六个省份的大小,引导学生讨论比较数的大小的方法。然后,教材设计了一系列不同层次的练习,意在巩固和发展学生比较数的大小的能力。这堂课我通过小组活动,使学生在“活动”中学数学,归纳总结出亿以内数位数相同和位数不同的数的比较大小的方法,为学生以后学习更大的数比较大小打下了坚实的基础。二、学情分析:本课教学对象是四年级学生,其思维特点是以具体形象思维为主,因此我把“亿以内数的大小比较”这一知识,溶合在学生所进行的“抽数比大小”活动之中,让学生在活动中掌握亿以内数的大小比较的方法。
一、教材分析《1亿有多大?》是人教版新教材小学四年级数学第七册第一单元内容。教材在数概念的教学中,十分重视数感的培养。让学生通过对具体数量的感知和体验,帮助学生理解数的意义,建立数感。但由于1亿这个数太大,学生很难结合具体的量获得直观感受。因此在“大数的认识”这一单元后,安排这个综合应用,旨在使学生通过探究活动,经历猜想、实验、推理和对照的过程,利用可想像的素材充分感受1亿这个数有多大。根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:二、教学目标1、通过“称一称”“数一数”“排一排”的实践活动,让学生从不同的角度感受一亿有大,并能结合实际,以具体的事物来表达对一亿大小的感受2、培养学生学习数学的兴趣和解决实际问题的能力,并在活动中增强主动参与和乐于合作的意识,培养勤俭节约的优良品德。