今天我说课的题目是《有多少名观众》,下面我从说教材、说学情、说教学流程几个方面对本课的教学进行一下阐述:一、说教材1、说内容。《有多少名观众》是北师大版四年级上册第33至34页内容。2、教材简析。对较大数进行估计,先要把较大的数分成大体相同的几个部分,那么只要能估计出其中一部分的数量,就可以用乘法算出要估计的数量。教科书提出三个问题:1.讨论用什么策略估计体育场馆中人数;2.如何估计一个看台观众的人数;3.如何估算得到体育场可容纳的观众人数。4、说教学目标。知识与技能:能结合已有的知识,探索三位数乘两位数的计算方法,并能进行正确计算。过程与方法:引导学生经历数学信息的收集、问题的提出、问题的解决的全过程,培养学生应用数学知识解决实际问题的意识.
知识与技能:学生通过对鸡兔同笼现象的观察与思考,从中发现一些特殊的规律,掌握解决问题的一般策略——列表;过程与方法:通过列表枚举的方法,积累解决问题的经验,经历列表、尝试和不断调整的过程;情感态度与价值观:在现实情境中,使学生感受到数学思想的运用与解决实际问题的联系,体会到数学的价值;重点:探索列表枚举的不同方法,找到解决问题的有效策略;难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法;关键:发现规律,确定猜测的范围。三、学生学情分析:学生在三年级时已经初步尝试了应用逐一列表法解决问题,还有个别学生会套用公式解决鸡兔同笼问题,但对问题本质理解不透。学生的思维较活跃,有一定的合作学习经验。本节课向学生提供了富有挑战性的学习素材,大大激发了学生探究的欲望。
活动3,估老虎头和枫叶的面积。图1是进一步巩固转化的方法;图二是灵活变式。学生体验到在实际生活中不只可以将不规则图形转化成一个基本图形,也可转化成几个基本图形再求面积。学生的思想层次得到提升。活动4,估计三个圆的面积。旨在体会面积单位越小,估计的面积越接近精确值。为学生今后会学习到的“密铺”知识打下基础。活动5,小组合作估手掌的面积。这个活动是对这节课所学知识的综合运用。如何估最简便?从画手掌轮廓到选择合适的方法估计,综合训练学生解决数学问题的能力。五个活动层层递进、层层深入,学生逐步体会到用转化成基本图形的方法估计不规则图形的面积的优越性,并能选择合适的转化方法解决实际问题,从而突破教学重难点。
反思本课的教学过程,我有以下几点认识:1、重视学生的经验和体验,发展数感建构主义的学生观认为,学习不是教师把知识简单地传递给学生,而是学生自己建构知识的过程。在学习过程中,学生不是被动地接受信息,而是以原有知识经验为基础,主动地建构知识的意义。2、关注学生的思维,给学生较大的学习空间。引导学生自主探索的关键问题是要给学生多大的探究空间?我以引导学生自主探索作为根本出发点,设计具有较大探究问题的空间,如“你发现了什么?你有什么问题?”等,学生们结合直观图的观察,逐步发现分子比分母小的分数可以在一个单位“1”中表示,并且小于1;3.本节课最大的不足之处就是由于时间观念,把一节课的内容分开了,比如在教学中加入画一画内容可以加深学生从部分到整体的思维,使学生更近一步理解分数。
(1)、创设情境,提出数学问题。出示主题图,中秋节到了,淘气和笑笑通过打电话的方式来表达对远方亲人的思念,从这幅图中你能得到哪些数学信息,能提出什么数学问题。学生很容易就找到数学信息“笑笑打国内长途,每分钟0.3元,共花5.1元;淘气打国际长途,每分钟7.2元,共花54元。”根据这些信息你能提出哪些数学问题呢?学生可能会说“笑笑打电话的时间是多少分?淘气打电话的时间是多少分?”还有的同学会提出“笑笑和淘气谁打电话的时间长?”等等,你能估一估淘气和笑笑谁打电话的时间长吗?(2)估算谁打电话时间长?通过估算,培养学生的估算意识,提高估算能力,丰富学生的素养,发展数感。在这里我分为三步:首先让学生说说是怎样估算的;其次指名学生说说估算的过程;最后评价和鼓励估算方法的合理性。
(三)探究新知,建立模型这一环节是课堂教学的主体部分,是学习知识、培养能力的主要途径。先是让学生独立思考,讨论交流,在具体的生活情境中让整个学习过程充满生活气息,使学生学会借助生活经验思考探索问题,培养他们运用数学知识解决日常生活中的实际问题的能力,获得分析问题和解决问题的一些基本方法,培养应用意识。(四)归纳总结,发现规律通过总结,使学生盲目无序的思考变得有序,使生活化的思维方式得以数学化,使宽泛肤浅的认识得以提炼和升华。(五)巩固练习,拓展延伸通过学习,了解学生本节课的掌握情况。体现了数学的真正价值,数学来源于生活,又应用于生活。(六)课堂小结,课后延伸使学生在重温学习的过程中获得积极的情感体验,使知识的脉络更清晰。
最后进行第三个比赛:看谁搭得多。用6个小正方体搭一个立体图形,从上面看到的形状是首先我引导学生用5个小正方体搭,学生思考很快按照看到的样子搭好。那在5个小正方体的基础上,再加上一个,这一个应该放在什么位置呢?通过学生小组合作交流之后,各小组展示了搭好的不同形状的立体图形。这样借助不同的搭法,使学生积累拼搭物体的经验,发展学生思维灵活性。评出搭得最多的小组。在第三个环节中我根据不同层次学生的不同需求,以及分层递进的教学原则,特别设计和安排了两种不同的练习。第一种是基础性的练习。第二中是应用性的练习。即是学生利用所学知识,解决实际问题。两种不同层次的练习既巩固了学生对知识理解,同时也培养了学生主动探究,合作交流和解决问题的能力。
一、说教材1、教材内容:本节是新北师大版教材六年级数学上册第二单元第二课的内容。2、教材分析:本课是一节计算与解决问题相结合的课,是在学生学会分数混合运算的运算顺序基础上学习的,是对整数乘法运算定律的推广,也是在学生学会简单的“求一个数的几分之几是多少?”的分数乘法问题以及简单两步计算问题基础上,进一步学习的较复杂“求比一个数多(或少)几分之几的数是多少?”的分数乘法问题,是后续学习整、小、分数混合运算及其简便运算,学习复杂分数应用问题的基础。3、学情分析:本课是在学习完分数混合运算(一)之后学习,学生已经有一定的基础。4、学习目标:(1)、通过解决“成交量”的问题,呈现不同解题策略,理解“求比一个数多几分之一的数是多少?”这类问题的数量关系,并学会解决方法。(2)、通过画图正确理解题意,分析数量关系,尤其是帮助理解“1+1/5”的含义。进一步体会画图是一种分析问题、解决问题的重要策略。
(2)结合实际问题情境,学会分析量与量之间的关系。(3)了解图表在生活中的应用,能看懂用图来描述的事件或行为。2、过程与方法经历运用图表描述事件行为的过程,提高学生的现象分析能力。3、情感、态度与价值观感受数学与生活的密切联系,体会数学图形语言简洁明了的特点,增强数学的应用意识。在教学中要让学生结合具体的生活情境,在图表中寻找描述生活情境的信息,以此来认识、了解一些表示数量关系的图表,同时感受用数学图表来描述事件的简洁性。根据上述观点,我认为本课的重点在于:从纵轴和横轴所表示的意义来认识图表,并能从图表中获取信息。难点则是:怎样看图,如何用语言去描述事件发生的过程。新时代的课堂,是信息技术的课堂,因此本节课我设计了一个多媒体课件予以辅助教学。
一、教材分析:教材的地位和作用新课标教材中《数据处理》安排在小学一至六年级的各册教材中。在第一学段(一至三年级)中,学生将数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方法;在第二学段(四至六年级)中,学生将经历简单的数据统计过程,进一步学习收集、整理和描述数据的方法,并根据数据分析的结果做出简单的判断与预测。在第二学段主要学习条形统计图、折线统计图、扇形统计图,主要使学生掌握各种统计图的优劣,经历运用数据描述信息、作出推断的过程,发展统计观念。有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到统计的实用价值。
(一)教材分析本节课是在学生已经学过除法和分数的意义以及分数与除法的关系的基础上进行教学的。由于学生在理解比的意义上比较困难,教材并没有采取直接给出“比”的概念的做法,而是密切联系学生已有的生活经验和学习经验,提供了多种情境,引发学生的讨论和思考,让学生体会引入比的必要性,感受比在生活中的广泛存在,也为“比的应用”“比例”等后续学习做好铺垫。(二)教学目标在认真分析教材的基础上,结合学生实际,我从知识、能力、情感等方面拟定了本节课的教学目标:知识目标:经历从具体情境中抽象出比的过程,理解比的意义,能正确读写比,会求比值。能力目标:培养学生自主学习、独立思考,能利用比的知识解决一些生活中的数学问题。情感目标:引导学生广泛联系生活实际,充分感受数学知识的美与乐趣,激发学生的求知欲望。
一、教材分析1.教材的地位和作用本节教材是北师大版六年级数学上册第5章《数据的收集与整理》第3节的内容,这一章是《全日制义务教育数学课程标准(实验稿)》第三学段“统计与概率”部分的第一章,也是基础章节。它让学生经历数据的收集、整理、描述的过程,体会适当选择统计图表对描述实际问题的作用,为以后进一步学习统计的有关知识打下基础2.学情分析学生在此之前已经在小学阶段学习过有关统计图表的知识,对三种统计图也有了一定的认识和感知,会画三种统计图,但是对于究竟如何选取适当的统计图去说明一些具体实际问题还存在一定困难,所以本节内容主要是让学生对三种统计图各自的特点和优势有一定的认识。3.教材重难点根据对教材的研读和学生学情的分析,结合新课标对本节的要求,特将本节的重难点确定如下:
(2) 中国文人的悲秋情结。3.《荷塘月色》中,作者为什么要离开家来到荷塘散步?4. 思考:作者的心里为何“颇不宁静?”(教师补充:写作背景)5. 出门散步后,作者的心情发生变化了吗? 有怎样的变化?6.思考讨论:为什么作者说“我”与“地坛”间有着宿命般的缘分,二者有何相似之处?(阅读1-5段)7.思考:作者从他同病相怜的“朋友“身上理解了怎样的”意图“?三、课堂总结李白说:“天地者,万物之逆旅也。”人生,如同一场旅行,在人生的旅途中,时而高山,时而峡谷,时而坦途,时而歧路。我们或放歌,或悲哭,然而,大自然始终以其不变的姿势深情地看着我们,而我们,也应该学会在与自然的深情对望中,找到生命的契合。正如敬亭山之于李白,故都的秋之于郁达夫,荷塘月色之于朱自清,地坛之于史铁生,他们从中或得到心灵的慰藉、精神的寄托,或得到生存的智慧与勇气,最终完成精神的超脱。
(三)实践操作,表现歌曲。课标中指出,“表现是实践性很强的音乐学习领域,是学习音乐的基础性内容,是培养学生音乐表现能力和审美能力的重要途径。”再加上对于这个年龄段的学生来讲,他们特别喜欢表现自己,所以,我充分发挥集体的力量,设计“小小音乐家”的教学环节,让同学们在小组中合作学习,采用不同形式演唱、用打击乐器伴奏、歌舞表演等形式将唱、奏结合,唱、演结合,巩固学生对歌曲的学习,体验合作学习的快乐,养成学生共同参与的群体意识和相互尊重的合作精神和实践能力,这也更体现了课标中音乐课程价值所提出的要培养学生的“社会交往价值”。(四)拓展延伸,创编歌曲。课标中的“文化传承价值”中明确提出:“要让孩子们通过学习世界上其他国家和民族的的音乐文化,拓宽他们的审美视野,认识世界各民族音乐文化的丰富性和多样性,增进对不同文化的理解、尊重和热爱。”
教学目标:1、在仔细观察常用文具的基础上,启发学生设计造型新颖、色彩鲜艳的各种常用文具。2、引导学生运用橡皮泥表现各种文具的形象,提高学生立体表现能力。教学重点:打开学生积极、丰富的创造性思维,引发对文具造型的兴趣。
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.