方法总结:让利10%,即利润为原来的90%.探究点三:求原价某商场节日酬宾:全场8折.一种电器在这次酬宾活动中的利润率为10%,它的进价为2000元,那么它的原价为多少元?解析:本题中的利润为(2000×10%)元,销售价为(原价×80%)元,根据公式建立起方程即可.解:设原价为x元,根据题意,得80%x-2000=2000×10%.解得x=2750.答:它的原价为2750元.方法总结:典例关系:售价=进价+利润,售价=原价×打折数×0.1,售价=进价×(1+利润率).三、板书设计本节课从和我们的生活息息相关的利润问题入手,让学生在具体情境中感受到数学在生活实际中的应用,从而激发他们学习数学的兴趣.根据“实际售价=进价+利润”等数量关系列一元一次方程解决与打折销售有关的实际问题.审清题意,找出等量关系是解决问题的关键.另外,商品经济问题的题型很多,让学生触类旁通,达到举一反三,灵活的运用有关的公式解决实际问题,提高学生的数学能力.
解:(1)设x分钟后两人第一次相遇,由题意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:两人一共跑了5圈.(2)设x分钟后两人第一次相遇,由题意,得360x+240x=400.解得x=23(分钟)=40(秒).答:40秒后两人第一次相遇.方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(首次相遇),甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(首次追上),甲的行程-乙的行程=一圈周长.三、板书设计追赶小明→行程问题→相遇问题追及问题环形问题教学过程中,通过对开放性问题的探讨与交流,体验生活中数学的应用与价值,感受数学与人类生活的密切联系,激发学生学习数学的兴趣,培养学生的创新意识、团队精神和克服困难的勇气.
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
2. 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案: 当x=4是,y= 3. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶,如图所示, , 分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.当时间t等于多少分钟时,我边防快艇B能够追赶上A。答案:直线 的解析式: ,直线 的解析式: 15分钟第五环节课堂小结(2分钟,教师引导学生总结)内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式: ;2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.
把解集在数轴上表示出来,并将解集中的整数解写出来.解析:分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集,再找出解集范围内的整数即可.解:x+23<1 ①,2(1-x)≤5 ②,由①得x<1,由②得x≥-32,∴不等式组的解集为-32≤x<1.则不等式组的整数解为-1,0.方法总结:此题主要考查了一元一次不等式组的解法,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、板书设计一元一次不等式组概念解法不等式组的解集利用数轴确定解集利用口诀确定解集解一元一次不等式组是建立在解一元一次不等式的基础之上.解不等式组时,先解每一个不等式,再确定各个不等式组的解集的公共部分.
有三种购买方案:购A型0台,B型10台;A型1台,B型9台;A型2台,B型8台;(2)240x+200(10-x)≥2040,解得x≥1,∴x为1或2.当x=1时,购买资金为12×1+10×9=102(万元);当x=2时,购买资金为12×2+10×8=104(万元).答:为了节约资金,应选购A型1台,B型9台.方法总结:此题将现实生活中的事件与数学思想联系起来,属于最优化问题,在确定最优方案时,应把几种情况进行比较.三、板书设计应用一元一次不等式解决实际问题的步骤:实际问题――→找出不等关系设未知数列不等式―→解不等式―→结合实际问题确定答案本节课通过实例引入,激发学生的学习兴趣,让学生积极参与,讲练结合,引导学生找不等关系列不等式.在教学过程中,可通过类比列一元一次方程解决实际问题的方法来学习,让学生认识到列方程与列不等式的区别与联系.
方法总结:已知解集求字母系数的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解题过程体现了方程思想.三、板书设计1.一元一次不等式的概念2.解一元一次不等式的基本步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)两边都除以未知数的系数.本节课通过类比一元一次方程的解法得到一元一次不等式的解法,让学生感受到解一元一次不等式与解一元一次方程只是在两边都除以未知数的系数这一步时有所不同.如果这个系数是正数,不等号的方向不变;如果这个系数是负数,不等号的方向改变.这也是这节课学生容易出错的地方.教学时要大胆放手,不要怕学生出错,通过学生犯的错误引起学生注意,理解产生错误的原因,以便在以后的学习中避免出错.
安装及运输费用为600x+800(12-x),根据题意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整数,所以x=2,3,4.答:有三种方案:①购买甲种设备2台,乙种设备10台;②购买甲种设备3台,乙种设备9台;③购买甲种设备4台,乙种设备8台.方法总结:列不等式组解应用题时,一般只设一个未知数,找出两个或两个以上的不等关系,相应地列出两个或两个以上的不等式组成不等式组求解.在实际问题中,大部分情况下应求整数解.三、板书设计1.一元一次不等式组的解法2.一元一次不等式组的实际应用利用一元一次不等式组解应用题关键是找出所有可能表达题意的不等关系,再根据各个不等关系列成相应的不等式,组成不等式组.在教学时要让学生养成检验的习惯,感受运用数学知识解决问题的过程,提高实际操作能力.
同学们,老师们大家好:今天我演讲的题目是《爱国,请从唱响国歌开始》。又是每周一的早晨,当太阳从地平线上升起,将一束束阳光洒满人间,给人们带来光明与温暖时,我们已经穿着整齐的校服,站在整齐的队伍里。每当震撼人心的国歌响起时,你感觉如何?是否会心潮澎湃,热血沸腾。是的,我们是“不愿做奴隶”民族,我们是“万众一心”的民族,我们是敢于“冒着敌人的炮火前进”的民族。正因为我们是这样的民族,即使到了最危险的时候,我们也没有屈服,而是毅然接受强敌的挑战。1931年,中国大地上发生了震惊中外的“九一八”事变,在日本侵略者剑拔弩张,步步紧逼的情况下,亿万中华儿女愤怒。“中华民族到了最危险的时候”就是在这种的历史背景下,迅速传遍大江南北。《国歌》不正是中华民族发出的吼声,前进的号角吗?而就在本月刚过去的12月13日是我国南京大屠杀死难者公祭日,在南京,市民们纷纷驻足,唱响了国歌,在中国,身为中华儿女的我们,没有遗忘。当国歌响起的时,仿佛能看到弥漫的硝烟,闪光的战刀,听到隆隆的炮声,雄壮的号音。
在经济水平较高、工业地域规模较大的地区,其发展潜力就远不一样,如钢铁工业。钢铁工业的生产过程比较复杂(如课本图5.31),需要有相互接近的工厂,不仅包括从事钢铁生产各道工序的工厂,如烧结厂、焦化厂、炼铁厂、炼钢厂、轧钢厂,还包括与钢铁生产有联系的工厂,如氧气厂、机修厂、发电厂、水泥厂等,总共可达20~30个工厂。这些工厂集 聚,设备大,管线长,占地多。因此,这样形成的工业地域(钢铁工业区)面积广,发育程度高,发展潜力大。这类工业地域 再加上为方便众多工人生活所配置的服务业和其他工业,在发展过程中,往往由于工业地域的扩展而形成工业城市。例如,我国的鞍山(“钢都”)、攀枝花、马鞍山、包头(“草原钢城”)等钢铁工业城市的形成。除此之外,石油化工区、机械制造工业区等属于发育程度高的工业地域,也往往扩展而形成工业城市。例如,我国的石油城大庆、克拉玛依,汽车城十堰等。
2、正确地使用节奏乐器,会用相应的乐器演奏打击乐,培养幼儿的思维能力。3、通过视唱、打节奏,掌握弹奏方法,练习弹奏曲子,激发幼儿的兴趣,体验集体演奏的快乐。二、 活动准备:1、语言节奏谱一张 2、打击乐器数个 3、打击乐谱一张4、乐谱表一张 5、电钢琴数台三、 活动过程:1、《律动》进场,1)老师发口令:“小兵们准备出发”幼儿“是”在进行曲的音乐伴奏下有精神地走步。2)音乐变弱:幼儿轻轻走路,老师按音乐的节奏轻声说:××××О,××××О 发现敌人,认真侦察! 幼儿弯腰半蹲着轻轻地走,手做持枪状边走边做寻找状进行侦察。
[活动目标]1.引导幼儿发现学习,激发幼儿的好奇心和求知欲望,培养幼儿的探索精神。 2.通过各种探索影子的活动,使幼儿发现光和影子的关系。 [活动准备] 准备电灯、手电筒、幻灯机、投影仪等。活动在晴天的户外场地上进行。 [活动过程]1、在户外找影子:如树影、房影、人影等。让幼儿在阳光下和阴暗处分别跑一跑,看看自己的影子,对比了解阳光下有影子,阴暗处则没影子。说说怎样才能产生影子。2、想一想,什么时候什么地方发现过影子?(在灯光、火光、月光、手电光照射下有影子);请幼儿分别在灯光、火光、手电光照射下观察影子有什么不同,为什么?3、画影子:早晨中午、下午站在同一地点,两人一组互相帮忙,把地上的影子画下来。比一比,自己与他人的影子是否相同?在三个不同时期,自己的三个影子有什么变化?想一想影子为什么会变?
2、探索根据实物图的内容选择答案图,并列出8的第一、二组加减算试。3、用较准确、完整的语言讲述算式的含意。教学准备:教具:图片:8的第一组实物图七张、第二组实物图五张。学具:幼儿用书、铅笔若干。操作材料若干(7以内的加减算式和8的第一、二组加减算试。)活动过程:一、集体活动。1、复习8的组成——玩碰球游戏。2、学习8的第一组加减。
3.继续培养幼儿遵守集体规则的良好品质。活动准备松紧带圈人手一个;录音机、磁带;彩色气球若干,并分两组挂在墙上。课前让幼儿了解松紧带圈的特性,知道它具有可变性,可以由短变长,由圆变长;利用其有弹性可以射出等等。活动过程:一、开始部分幼儿拿着松紧带圈自由进入场内,听到哨音后集合成4路纵队做松紧带圈操。
接着,教师引导学生与大自然对话,说一说:“大自然,我想对你说……”。设计意图:提升学生对大自然的情感与认识,感恩自然,喜欢在大自然中活动。活动三:阅读绘本,感恩自然学生阅读教材第30页到33页的绘本《大自然的语言》,教师引导学生说一说,大自然不仅给我们物质的馈赠、精神的馈赠,还给我们带来智慧的启迪。(板书:感恩)设计意图:再次感受与大自然的共在的情感。环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的认识与情感。环节四:回归生活,拓展延伸课后,请同学们走进自然,拥抱自然。设计意图:将课堂所学延伸到学生的日常生活中,有利于落实行为实践。
一、教学目标:1、会辨认基本几何体(直棱柱、圆柱、圆锥、球等)2、了解直棱柱、圆柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型;3、能想象基本几何体的截面形状;4、会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型;5、能从丰富的现实背景中抽象出空间几何体和基本平面图形,进一步认识点、线、面。6、获得一些研究问题的方法和经验,发展思维能力,加深理解相关的数学知识。7、体验数学知识之间的内在联系,初步形成对数学整体性的认识。教学重点:在具体的情境中,认识一些基本的几何体,并能描述这些几何体的特征。教学难点:是描述几何体的特征,对几何体进行分类。二、设疑自探1、梳理本章知识(一)生活中有哪些你熟悉的图形?举例说明.(二)你喜欢哪些几何体?举出一个生活中的物体,使它尽可能地包含不同的几何体.(三)用自己的语言说一说棱柱的特征?(直棱柱)
1.知识目标:在回顾与思考中建立本章的知识框架图,复习有关定理的探索与证明,证明的思路和方法,尺规作图等.2.能力目标:进一步体会证明的必要性,发展学生的初步的演绎推理能力;进一步掌握综合法的证明方法,结合实例体会反证法的含义;提高学生用规范的数学语言表达论证过程的能力.3.情感价值观要求通过积极参与数学学习活动,对数学的证明产生好奇心和求知欲,培养学生合作交流的能力,以及独立思考的良好学习习惯.重点:通过例题的讲解和课堂练习对所学知识进行复习巩固难点:本章知识的综合性应用。【归纳总结】(1) 定义: 三条边都相等 的三角形是等边三角形。(2)性质:①三个内角都等于60度,三条边都相等②具有等腰三角形的一切性质。
一、本章知识要点: 1、锐角三角函数的概念; 2、解直角三角形。二、本章教材分析: (一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。如何解决这一关键问题,教材采取了以下的教学步骤:1. 从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。2. 教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2。
踏着秋天的鼓点,我们走进金色的九月;再过两天我们又将迎来一年一度的中秋佳节,是我国的传统佳节,农历八月十五恰在秋季的中间,故称之中秋节,是仅次于春节的第二大传统节日。每到这一天,许多远离家乡的游子,纷纷赶回家中,与父母亲友欢聚一堂,把酒言欢。中秋的月最圆,最明,最美;中秋月如水如镜,诗情画意,充满浓浓的亲情,又被认为是我们中国人的团圆节。“中秋”一词最早在周朝就已出现,而中秋节的盛行开始于宋朝。 中秋节原是丰收的节日。过去,人们在丰收的季节里,总要大事庆祝一番,庆祝一年的好收成,享受丰收的喜悦。中秋时节云稀雾少,月光皎洁,民间除了要举行赏月、祭月、吃月饼祝福团圆等一系列活动,有些地方还有舞草龙,砌宝塔等活动。中秋节还有许多美好的传说,嫦娥奔月、吴刚折桂、玉兔捣药等等,这些无不寄托着人们对生活无限的热爱和对美好未来的向往。
老师们、同学们,星期一早上好:今天我讲的主题是《俭朴是美德》。“锄禾日当午,汗滴禾下土。谁知盘中餐,粒粒皆辛苦。”这首古诗我们耳熟能详,诗中所倡导的勤俭之风一直以来都是我们中华民族的传统美德。古代圣贤对勤俭节约推崇备至,蜀相诸葛亮在《诫子书》中就曾写下“静以修身,俭以养德”的千古名句。现在,国家正在号召把我国建设成为节约型社会,我们学校也要建设成为一个节约型校园。毛泽东主席就是艰苦奋斗、廉洁俭朴的典范。在延安时期,为节省灯油,他在考虑问题时把灯光扭小,等考虑成熟要写下来时,再把灯光扭亮。解放后,他的一件毛巾被打了73个补丁,两件睡衣上一件是67个补丁,一件是59个补丁。著名作家茅盾的书房里,始终放着一张简陋陈旧的小书桌、一盏台灯、一只砚台,生活非常俭朴,然而在去世前,他却把多年积存的25万巨额稿酬献给国家,作为“茅盾文学奖”的基金。今年春节期间,xx总理到胜利油田看望油田工人,细心的记者发现:他身上穿的一件羽绒服至少已经十年了。