预设:《乡愁》借邮票、船票、坟墓、海峡这些具体的实物,把抽象的乡愁具体化了,使之变成具体可感的东西,表达了诗人渴望与亲人团聚,渴望祖国统一的强烈愿望,也表达了诗人思念家乡的强烈情感。2.分析明晰升格写法,体会写作特色。 教师:我们可以从诗歌“用具体事物表达抽象情感”角度去分析。教师指正:教师:我们可以从诗歌“构思精巧,富于音韵之美”角度去分析。教师指正:五、诗歌深读,学后感悟教师:我们每个人心里都有一抹忘不掉、抹不去的东西,通过这课学习,我们的心里都有什么呢?学生讨论、教师指正。预设:每个人的心里,都有一方魂牵梦萦的土地。得意时想到它,失意时也会想到它。余光中的诗里,乡愁是游子的那颗火热赤诚的心。中华儿女的骨血中有对故乡割舍不断的依恋,因为故乡是我们的出生地,是我们情感的根源,是养育我们成长的所在。山水也许能隔开一切,却隔不断一个漂泊异乡的游子对故乡的深情!
附件A 监理服务的形式、范围与内容一、监理服务的形式1服务要求例:对监理单位的资质、监理服务的主要方式及监理工作的隶属关系等方面的要求。2组织机构认对监理服务机构的设置、工作计划的安排、主要人员的资质等方面的要求。二、监理服务的范围1服务范围例:监理服务所包括的工程范围和工作范围。2服务目标例:监理服务的性质、目的及主要工作目标。三、监理服务的内容例:本条所列的监理服务各阶段内的具体监理工作,应主要参照《公路工程施工监理规范》(JTJ 077-95)的内容予以归纳,并根据本工程的具体情况予以补充。1编制监理规划或计划;2熟悉合同文件,了解施工现场;3参与支柱和设计交底工作,审查承包人提交的复测成果和施工图设计;4督促和检查承包人建立质量保证体系;5主持召开第一次工地会议和常规工地会议;6已发布开(复)工今批准单项工程开工报告;7审核承包人授权的常驻现场代表的资质,以及其它派驻到现场的主要技术、管理人员的资质;
l.正常服务的费用例:监理单位正常服务费用的计算方法、费率和价格或双方约定的其它方法。监理单位正常服务费用一般应包括如下内容:(1)派驻监理人员费用1.基本工资2.加班费(法定节、假日的加班和法定工作时间以外的延时工作,按《劳动法》的规定办理)3.各种补助4.各种津帖5.个人所得税6.其它(2)现场费用1.辅助、服务、勤杂等人员的聘用费2.办公用品费3.文具纸张费4.资料费5.劳动保护费6.防暑降温费或冬季取暖费7.伙食费8.差旅费9.煤、气、水、电费10.交通、通讯资11.其它(3)不可预见费建议比例1.0.%-1.5.%(4)公司取费1.法定提留基金(工会、教育、职工福利、住房、养老等)2.上级管理费3.法定利润4.法定税收(营业税、所得税等)5.其它2.附加服务的费用例:监理附加服务费用的基本测算方法,由双方协商确定,一般可采用如下办法:(1)附加工程工作量x基本费率;(2)附加服务工作日数X监理服务日平均费用;(3)附加服务工作比例X监理服务费用总额。
2、学会自己能做的事自己做,增强自我服务的能力。情境创设:为每个幼儿准备一根鞋带;穿有鞋带的鞋来园。活动实施:1、欣赏故事《系鞋带》。提问:你会系鞋带吗?故事里的宝宝是怎么学会系鞋带的?
从幼儿的感受和认知上制定:1.欣赏中国结的多样性,感受中国结的美。这是活动的重点,在活动中,运用欣赏、交流、情感的激发等形式突破重点。从幼儿的能力和情感上制定2.学习编简单图案,萌发幼儿对中国劳动人们的热爱之情。通过引导孩子们动手制作简单的中国结,取名等实现情感的升华。活动准备:幼儿知识能力的准备:对中国结意义的简单了解环境布置的准备:收集各种中国结悬挂起,布置成一个展览厅
3、认识感觉器官的重要性,学习运用听、看、摸、嗅等感觉途径探索事物。教育活动:1、健康活动:身体触觉 爱护眼睛2、语言活动:故事《颜色真奇妙》 小线索大侦探3、社会活动:神秘箱 假如我看不见4、科学活动:嗅觉瓶 眼睛变魔术 复习8以内数的形成5、艺术活动:歌曲《猫戴帽》 制作香香袋环境创设:师生共同布置活动区角,各种五官表情卡片、娃娃脸谱(无五官)、彩色透明卡、眼镜架。家长工作:1、和幼儿一起搜集日常生活中颜色鲜明、气味较强、触感较明显的物品,供幼儿运用不同的感官去感知探索。2、外出时注意引导孩子运用不同的感官了解周围环境。活动设计1集体活动(一)活动内容:社会《神秘箱》活动目标:1、激发幼儿探索的兴趣2、发展幼儿触觉、嗅觉、视觉的发展。3、运用感官知觉做游戏,了解各种感觉器官的功能。活动准备:教师自制神秘箱,并将常见物品,放在箱子中。活动过程:(一)、导入 游戏“指指点点”,激发幼儿兴趣。
活动名称:我喜欢的玩具活动目标:乐意探索各种玩具的玩法,了解他们的不同性能和作用。活动准备:1、各种电动玩具、木制玩具、塑料玩具、毛绒玩具、发条玩具等。2、幼儿自带玩具。3、不同型号的电池。活动过程:一、观察摆弄1、参观各种玩具。2、讨论:怎样能把玩具放得整整齐齐,哪些玩具可以放在一起。3、尝试将不同玩具进行分类摆放。4、说说自己会喜欢哪些玩具,可以怎样玩,怎样不使玩具损坏。5、每人挑一个自己喜欢的玩具玩一玩,找出不同的玩法。
1、全面负责农民工工资突发事件的应急处置工作。2、密切关注项目部是否有拖欠克扣劳动者工资情况,是否有上访事件动态,做到及时发现、及时上报,迅速到位,及时地处理,防止事态进一步扩大。四、处置应急事件程序1、信息报告:发生农民工工资突发事件后,在最短的时间内报告集团相关部门。2、启动预案:突发事件发生后,应急处理小组要在20分钟内做出案情初步判断,并启动应急预案。
兹经双方同意,甲方委托乙方在 加工标准磁罗经,一切所需的零件与原料由甲方提供,其条款如下:1.来料加工和来件装配的商品和数量: (1)商品名称--标准磁罗经; (2)数量--共计 台; 2.一切所需用的零件和原料由甲方提供,或由乙方在 或 购买,清单附于本合同内; 3.每种型号的加工费如下: (1)GLC-1型标准磁罗经: U.S.D(大写: 美元); (2)GLC-2型标准磁罗经: U.S.D(大写: 美元); (3)GLC-3型标准磁罗经: U.S.D(大写: 美元)。 4.加工所需的主要零件、消耗品及原料由甲方运至(某地) ,若有短少或破损,甲方应负责补充供应; 5.甲方应于成品交运前1个月,开立信用证或电汇全部加工费用及由乙方在 或 购买零配件、消耗品及原料费用;
6.乙方应在双方同意的时间内完成GLC-1型标准磁罗经的加工和交运,不得延迟,凡发生无法控制的和不可预见的情况例外; 7.零件及原料的损耗率: 加工时零件及原料损耗率为 %,其损耗率由甲方免费供应,如损耗率超过 %,应由乙方补充加工所需之零件和原料; 8.若甲方误运原料及零件,或因大意而将原料及零件超运,乙方应将超运部份退回,其费用由甲方承担,若遇有短缺,应由甲方补充; 9.甲方提供加工GLC-1型标准磁罗经的零件和原料,乙方应严格按规定的设计加工,不得变更; 10.技术服务: 甲方同意乙方随时提出派遣技术人员到 的要求,协助培训乙方的技术人员,并允许所派的技术人员留在乙方检验成品。为此,乙方同意支付每人月薪 美元,其他一切费用(包括来回旅费)概由甲方负责; 11.与本合同有关的一切进出口手续,应由乙方予以办理; 12.加工后的标准磁罗经,乙方应运交给甲方随时指定的国外买主;
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:老师这里有三道题哪位同学会做?1、已知路程和时间,怎样求速度?2、已知总价和数量,怎样求单价?3、已知工作总量和工作时间,怎样求工作效率?生1:速度=路程÷时间。生2:单价=总价÷数量。生3:工作效率=工作总量÷工作时间。师:同学们可真棒!这节课我们就来研究这些数量间的一些规律和特征。你们准备好了吗?生:准备好了!(板书:成正比例的量)【设计意图】引发学生学习的兴趣,唤起学生已有的只是经验,更好地进行新旧知识的结合,也有利于引导学生发现数量关系内在的规律。(二)探究新知(PPT课件出示例1)文具店有一种铅笔,销售的数量与总价的关系如下表。 数量/支12345678…总价/元3.5710.51417.52124.528…观察上表,回答下面的问题。(1)表中有哪两种量?(2)总价是怎样随着数量的变化而变化的?(3)相应的总价与数量的比分别是多少?比值是多少?1.探究数量与总价两个量之间的关系。师:仔细观察这张表格,它为我们提供了哪些数学信息?生:给我们提供了文具店销售彩带的数量是1,2,3,4,5,6,7,8米,总价分别是:3.5, 7,10.5,14,17.5,21,24.5,28元。师:表中有哪两种量?生:有数量和总价两种量。师:总价是怎样随着数量的变化而变化的?生:总价是随数量的增加而增加的。师:相应的总价与数量的比分别是多少?比值是多少?生1:=3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5生2:相对应的总价和数量的比的比值是一定的。师:总价与数量的比值表示什么?
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40
5、交流。学生可能有按照长方体的表面积的计算方法计算的。交流时注意引导学生比较哪种方法最简便,同时明确在正方体表面积的计算公式中为什么要乘6。7、质疑问难。8、揭示表面积的含义:刚才我们在求做长方体和正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体和正方体6个面积的总面积,叫做它的表面积。(三)巩固练习,扩展应用。(10分)数学来源于生活,又服务于生活,学生学到的知识通过应用才能真正理解和掌握。1、书中的习题。15页练一练、17页1、5题。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知识的理解。强化了学生运用新知解决实际问题的能力,使学生形成了一定技能技巧。
师:非常正确。现在我们知道了表示方法,但是我们该怎么读呢?也就是说我们现在知道了怎么用数学符号去表示,或者说是会书写了。但是我们要说给别人听该怎么说呢?也就是该怎么读它呢?(正号!)正确。这两个符号在我们数学的术语里面又有了另外一个称呼,就是“+”在这里读着“正号”,“-”在这里读着“负号”。这个读法是数学里面规定的,是我们日常用语中的习惯读法。这里的+5,+6而不是我们所说的加上5,加上6,加是一个运算过程,而正号只是一个符号,它可以和数字组合在一起作为是整体的,是一个整体的数字,是不含运算的。同理,这里的-5,-6它也不是减去5,、减去6,而是一个-5、-6的数字。为了和我们的加号和减号相区分,所以我们就给了它另外一种读法。
一、教材分析长方体和正方体的表面积是人教版教材五年级下册第三单元第二章节的内容。本节课的地位和作用:这部分内容是在学生学习了长方体和正方体的认识以及掌握了长方形和正方形面积的计算方法的基础上进行教学。教材中各年级涉及到的内容如下:长方体和正方体的表面积这部分内容,是在学生认识并掌握了长方体和正方体特征的基础上教学的。教材为了使学生更好地建立表面积的概念,加强了动手操作,让每个学生拿一个长方体或正方体纸盒,沿着棱剪开,再展开,观察展开后的形状。并分别用“上”“下”“前”“后”“左”“右”标明6个面。这样,可以使学生把展开后每个面与展开前这个面的位置联系起来,更清楚地看出长方体相对的面的面积相等,以及每个面的长和宽与长方体的长、宽、高之间的关系,既让学生明确了表面积的含义,又为下面学习计算长方体和正方体的表面积做好了准备。
3.说教学重、难点依据数学课程标准,及对教材的认识,我确定了本节课的重点和难点。教学重点:掌握长方体和正方体的特征。教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。二、说教法根据几何知识的教学特点、本节教学内容以及小学生空间观念薄弱的特点,我将采用以下教学方法。直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣;观察发现法:通过让学生观察长方体、正方体的一些实物发现新知,培养学生的观察概括能力;合作探究法:引导学生通过自主研究、合作讨论等活动形式来获取知识。同时运用多媒体辅助教学,使学生的观察能力、抽象概括能力逐步提高。三、说学法为了使学生较好地掌握长方体和正方体的特征,并逐步形成空间观念,除了让学生通过观察来认识长方体和正方体的特征以外,在观察实物的基础上,通过动手操作,看一看,摸一摸,数一数,量一量,做一做来学习新知,同时以此来激发学生的学习兴趣,调动学生的积极性。