(三)联系生活玩中强化活动二:制作方向板这样不仅可以区分方向板上的8个方向和生活中的8个方向,而且对于四个新方向一目了然。再利用它做一些实践活动的练习,从而体会到方向和位置一样,都是相对的。要找好中心点才能确定方向。进而考察学生对知识的理解能力和反应能力。活动三:把你的方向板和教室的方向保持一致,同桌或小组间进行你问我答的游戏活动。(四)联系生活拓展应用出示中国地图,先来找找首都北京在哪里?我们的家乡大致在北京的()方向,实际是以北京为中心,我们可以在那画一个方向标,从而使问题一目了然。再找吉林、辽宁、四川分别在北京的()方向。(五)师生整理体验收获在这一环节中,主要让学生谈两点:1.谈收获,让学生说一说这节课学会了什么。
教学过程一、谈话激趣,引入课题师:同学们,你们喜欢小动物吗?动物是人类的朋友,我们都要爱护它们。人们还把可爱的动物做成各种形状的卡通画呢,用它们作为吉祥物参加各种盛会。请把你最喜欢的动物的名字写在卡片纸上,只写一种动物,不会写的也可以画出成图形或卡通形象。谁来说一说。同学们的盛会是六一节,学校准备把同学们最喜欢的动物作为吉祥物布置到校园。该把哪种动物作为吉祥物呢?怎样才知道哪种动物是同学们最喜爱的动物呢?师:对没有调查就没有发言权,调查一下哪种动物最受我们喜欢就行了。用什么方法才能知道喜欢某种动物的人最多呢?请小组讨论下该怎样调查呢?把详细的过程说出来。二、小组合作,探究新知1、说一说,你们组准备怎样开展调查生1:我们让喜欢某种小动物的同学举手。查一查人数就行了。
教材分析:教材借助购买物品的生活情境提出问题,展开探索并学习三位数加减法的验算方法。本节课的学习中,要给学生足够的时间和空间,引导学生充分利用迁移规律探索和学习新知识,同时培养学生认真检查仔细验算的良好学习习惯。学情分析:学生已经学过了二位数加减二位数的验算方法,而三位数加减三位数的验算是二位数加减二位数的验算知识的拓展,它们的算理完全相同,为此难度不大,但要给学生足够的时间和空间去探索学习。教学目标:知识目标:1.结合现实情境,探索掌握三位数加减法的验算方法。过程与方法:在探索验算的过程中,初步形成归纳、整理知识的能力,养成认真检查仔细验算的良好学习习惯。情感态度与价值观:通过自主探索、合作门交流,感受学习数学的乐趣,增强学习数学的自信心和成功感。
教学重点:体验1分时间的长短,建立一分钟的概念。教学难点:估计一分钟有多长学情分析本班学生对时分的知识在一年级已经有了一个初步的认识。能区分时针、分针和秒针;能初步认识钟面上的整点、半点;但是整点刚过和接近整点学生区分还有困难。二、说学生本节课的教学对象是二年级的学生,他们生活经验少,但思维比较活跃,他们还是以无意注意为主,而无意注意是由刺激物的特点引起的,在教学时,尽可能创设生动的数学活动,密切数学与生活的联系,使知识变成学生的切身需要,使他们在玩中学,在动中求知,通过操作交流去探索创新。三、说教学法在教材的处理上,我联系生活实际,用灵活多变的活动激发学生的学习情感,充分放手让学生大量开展多种形式有趣的实践活动,开放的情境,引导学生体验。使学生较好的认识一分并且对于一分能干什么也会有深刻的认识。
(三)联系实际,巩固应用这一环节设计了帮助蓝猫“买家电”这一情境,将学到的知识同实际问题相结合,使学生感到数学源于生活并服务于生活。特别是问题(4):“如果它用900元钱买一台录音机和一台洗衣机它的钱够吗?如果不够,还差多少元钱?”这个问题的设计发散了学生的思维,学生可以用先加再减的方法,也可以用连减的方法,给学生的计算提供较大的空间,而且学生如果先把两种电器的价钱相加就能凑成整百整十数,很快能计算出结果,这样不仅巩固了本节所学知识,同时还应用了前几节课的口算知识。1.师:利用今天学习的知识可以解决很多生活中的问题,今天蓝猫就想请大家帮个忙,它想买几件家用电器,我们陪它到家电城看看好吗?(课件出示商品及标价。)
二、说学生通过前面的学习,学生已经认识了长度单位:米、分米、厘米、毫米,以及它们之间的进率,多数学生能联系生活实际,合理运用长度单位。但“千米”这个长度单位比较抽象,学生学习起来有些困难。为了激发学生的学习兴趣,可以把学生带到学校的操场上进行教学,让学生实地拉一拉、走一走、想一想等活动,充分感知“千米”这一长度单位到底有多长;对于学困生,以和他们玩游戏的方式来引导他们感知1千米的具体长度,从多角度来激发他们的参与,给予他们激励性的评价语言,并让他们积极汇报自己的亲身体会,达到全员参与,共同提高的原则。三、说教学目标新课程标准在空间与图形中明确提出:在教学中,应注重所学知识与日常生活的密切联系:应注重使学生在观察、操作等活动中,获得直观经验。结合我对教材的理解和本班学生的实际情况,我拟订了以下教学目标:
第三个环节是:综合实践,学以致用由于我班的同学都在学校吃早餐,可食堂的工人师傅们并不知道同学们最喜欢吃什么样的早餐,所以有时侯做了同学们都不喜欢吃的饭菜时,就会剩下很多,造成很大的浪费。怎样来解决这个浪费的问题呢?由此引导学生说出可以利用刚才学到的统计知识统计出同学们最喜欢的早餐。2、教师给每小组发一张早餐统计图,让学生在喜欢的早餐上画三角符号,由小组组长将本组的统计结果贴在黑板上,然后集体填写全班学生喜欢的早餐统计图和统计表。看着这张统计图和统计表请学生说说你想对食堂的管理人员提点什么建议?希望他们怎么做?第四个环节是:学生回顾,教师小结小朋友们,学了这节课你们知道要比较东西的多少的时候,画什么图比较好啊?(统计图)那在画统计图时要注意些什么呀?(先把东西分一分,再摆一摆,摆的时候注意要把东西摆放整齐)
一年级学生是7-8岁的儿童,思维活跃,课堂上喜欢表现自己,在学习中随意性非常明显,渴望得到教师或同学的赞许。“比大小”这一内容的教学是在学生已经初步会认、读、写5以内各数的基础上教学的。充分利用学生的生活经验,引导学生用1-5各数来表示物体的个数,还要引导学生通过观察、比较、操作等实践活动,增加感性认识,初步接触集合、对应、统计等数学思想。相信本节课内容的教学,学生掌握并不会感到十分的困难。 说教学策略:结合本班的学情,为了突出学生的主体地位,在教学中让学生积极动手、动眼、动脑、动口,引导学生通过自己的学习,体验知识的形成过程,积极开展本节课的教学活动。为更好地突出重点,突破难点,我准备采用以下教学方法。一、创设情境,调动学生的生活经验,引起学习兴趣。使学生好学。二、动手实践,探索新知。调动学生学习的积极性,使学生会学,在学习过程中有意培养学生主动探索的能力。
说教学内容:可能性的大小(人教版三年级上册P106~108例3、例4、例5)说教学目标:1、知识技能目标:使学生进一步体验不确定事件,知道事件发生的可能性是有大小的。2、过程方法目标:经历事件发生的可能性大小的探索过程,初步感受随机现象的统计规律性;在活动交流中培养合作学习的意识和能力。3、情感态度价值观目标:感受数学就在自己身边,体会数学学习与现实的联系;进一步培养学生求实态度和科学精神。说教学重难点教学重点:学生通过试验操作、分析推理知道事件发生的可能性有大有小。教学难点:利用事件发生的可能性的知识解决实际问题。说教学过程:一、感受可能性的大小。1.出示问题:(1)谈话引入:通过前面的学习,我们已经知道了在生活中,有的事情可能发生,有的事情是不可能发生的,今天我们进一步研究可能性的问题。
在课改进行得如火如荼的今天,新课程如一股春风吹进了我们的校园,走进了每一位师生的生活。我校从去年秋季开始选用了人教版的《义务教育课程标准实验教科书》,一年多来,我们不断更新教学理念,刻苦学习、大胆创新,探索了一些适合本地教学实际的有益途径,本节课是义务教育课程标准实验教科书一年级上册的内容,在学生已经学习了8和9 的加减法后进行教学的。学好本节课将为今后学习文字应用题打下坚实的基础。在教学过程中我将教材做了一些小小的改动,根据优化课堂教学的需要对教材进行了再加工,旨在因地制宜,使学生进一步掌握加减法的意义和10以内加减法的计算方法。提高学生运用所学知识解决实际问题的能力。让学生在学习中受到热爱自然、保护环境的教育,同时在教学中培养他们的合作意识和创新精神。
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.
二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
这样设计,既复习了新课所必备的旧知,又自然合理地引入新课,一开始就紧紧吸引了学生的注意力,激发起学生的求知欲。(二)探索新知1、质数和合数的意义(教学例1)。(1)让学生拿出印发的写有例1原题的练习纸,利用学过的求约数的方法,写出1-12每个数的所有约数。(2)按照约数个数的多少进行分类,提出以下问题让学生讨论:①每一个数约数的个数相同吗?各有多少个约数?②按照每个数的约数个数的多少,可以把这些数分成几类?你认为是一类的用同一符号标出来。检查学生讨论情况并提问:你是怎样分的?为什么这样分?每一类各包括了哪几个数?让学生充分发表意见,然后师生共同归纳,并用投影出示三种分类情况:
3.第三个环节是:巩固深化,应用新知。首先让学生完成课本76页练习十三的第一题。主要是检验学生对复式折线统计图绘制方法的掌握情况,并能对复式折线统计图所表达的信息进行简单的分析、比较。练习时,先让学生在书上独立完成,再说一说制图的正确步骤,我用多媒体演示,并提醒学生注意最高气温和最低气温对应的折线各用什么表示,还要写上数据和制图日期,根据学生的制作情况,还可以组织学生讨论一下,两条折线上的数据怎样写就不混淆了?最后让学生看图回答题中的问题,这里重点帮助学生弄清“温差”的含义,另外,在回答最后一个问题时,学生可能会说“我喜欢看统计图”,我就重点让学生说说为什么喜欢看统计图?从而让学生进一步体会复式折线统计图的直观、形象的优越性
3、归纳求最小公倍数的方法。师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)4、看书88——89页,你还有什么问题?师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。三、解决问题,深化理解(练习是理解知识,掌握知识,形成技能的基本途径,又是运用知识,发展智能,完善认知结构的重要手段。
教学目标:1.知道二次函数与一元二次方程的联系,提高综合解决问题的能力.2.会求抛物线与坐标轴交点坐标,会结合函数图象求方程的根.教学重点:二次函数与一元二次方程的联系.预设难点:用二次函数与一元二次方程的关系综合解题.☆ 预习导航 ☆一、链接:1.画一次函数y=2x-3的图象并回答下列问题(1)求直线y=2x-3与x轴的交点坐标; (2)解方程2x-3=0(3)说出直线y=2x-3与x轴交点的横坐标和方程根的关系2.不解方程3x2-2x+4=0,此方程有 个根。二、导读画二次函数y= x2-5x+4的图象1.观察图象,抛物线与x轴的交点坐标是什么?2.求一元二次方程x2-5x+4=0的解。3.抛物线与x轴交点的横坐标与一元二次方程x2-5x+4=0的解有什么关系?(3)一元二次方程ax2+bx+c=0是二次函数y=ax2+bx+c当函数值y=0时的特殊情况.二次函数y=ax2+bx+c的图象与x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?