. 一个数的倒数等于它本身的数是()A.1 B. C.±1 D.04. 下列判断错误的是()A.任何数的绝对值一定是非负数; B.一个负数的绝对值一定是正数;C.一个正数的绝对值一定是正数; D.一个数不是正数就是负数;5. 有理数a、b、c在数轴上的位置如图所示则下列结论正确的是()A.a>b>0>c B.b>0>a>cC.b<a<0< D.a<b<c<06.两个有理数的和是正数,积是负数,则这两个有理数( )A.都是正数; B.都是负数; C.一正一负,且正数的绝对值较大; D.一正一负,且负数的绝对值较大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整数的和是()A.-1999 B.-1998 C.1999 D.20009. 当n为正整数时, 的值是()
1、如图,OA、OB是两条射线,C是OA上一点,D、E是OB上两点,则图中共有 条钱段、它们分别是 ;图中共有 射线,它们分别是 。2、如果线段AB=5cm,BC=3cm,那么A、C两点间的距离是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、从3点到5点30分,时钟的时针转过了 度。5、一轮船航行到B处测得小岛A的方向为北偏西30°,则从A处观测此B处的方向为( ) A. 南偏东30° B. 东偏北30° C. 南偏东60° D. 东偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC的度数为( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如图,AO⊥OB,直线CD过点O,且∠BOD=130°,求∠AOD的大小。8、已知:如图,B、C两点把线段AD分成2∶4∶3三部分,M是AD的中点,CD=6,求:线段MC的长。9、平面上有n个点(n≥2)且任意三个点不在同一直线上,经过每两个点画一条直线,一共可以画多少条直线?迁移:某足球比赛中有20个球队进行单循环比赛(每两队之间必须比赛一场),那么一共要进行多少场比赛?
方法总结:由绝对值的定义可知,一个数的绝对值越小,离原点越近.将实际问题转化为数学问题,即为与标准质量的差的绝对值越小,越接近标准质量.【类型四】 绝对值的非负性已知|x-3|+|y-2|=0,求x+y的值.解析:一个数的绝对值总是大于或等于0,即为非负数,若两个非负数的和为0,则这两个数同为0.解:由题意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法总结:几个非负数的和为0,则这几个数都为0.三、板书设计绝对值相反数绝对值性质→|a|=a(a>0)0(a=0)-a(a<0)互为相反数的两个数的绝对值相等两个负数比较大小:绝对值大的反而小绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.
已知xm-n+1y与-2xn-1y3m-2n-5是同类项,求m和n的值.解析:根据同类项的概念,可列出含字母m和n的方程组,从而求出m和n.解:因为xm-n+1y与-2xn-1y3m-2n-5是同类项,所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以当m=4,n=3时,xm-n+1y与-2xn-1y3m-2n-5是同类项.方法总结:解这类题,就是根据同类项的定义,利用相同字母的指数分别相等,列方程组求字母的值.三、板书设计用加减法解二元一次方程组的步骤:①变形,使某个未知数的系数绝对值相等;②加减消元;③解一元一次方程;④求另一个未知数的值,得方程组的解.进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.选择恰当的方法解二元一次方程组,培养学生的观察、分析问题的能力.
解析:要在地球仪上确定南昌市的位置,需要知道它的经纬度,故选D.方法总结:本题考查了坐标确定位置,熟记位置的确定需要横向与纵向的两个数据是解题的关键.【类型二】 用“区域定位法”确定位置如图所示是某市区的部分简图,文化宫在D2区,体育场在C4区,据此说明医院在________区,阳光中学在________区.解析:本题首先给出的是表示文化宫和体育场的位置,即D2区和C4区,这就确定了本题中表示建筑物位置的方法,即字母表示列数,数字表示行数.故填A3,D5.方法总结:解此类题先要弄清区域定位法中字母及数字各自表示的含义,再用已知的表示方法来确定相关位置.三、板书设计确定位置有序实数对方位法经纬度区域定位法将现实生活中常用的定位方法呈现给学生,进一步丰富学生的数学活动经验,培养学生观察、分析、归纳、概括的能力.教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境;另一方面,为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究.
(1) 讨论——选择。教师精心安排了两个环节,一是让学生讨论、选择一个喜欢的分数作为研究对象,二是让学生讨论、选择不同的实验材料,确定不同的验证方法,然后全班汇报。教师给每组准备了一个材料篮,里面装着计算器、钟表、数张纸、线段图、彩笔、直尺等。各小组经过热烈的讨论标新立异地选择了不同的分数作为研究对象、选择不同的材料作为实验器材,一个个跃跃欲试。学生可能会选择折纸涂色、画线段图、用计算器计算、看直尺、看钟面等不同的方法去证明两个分数是否相等。设计意图:这样设计,既是为后面的实验做好准备,避免学生出现盲目行动,同时也是为学生探究方法的多元化创造条件。(2)实验——记录:各组拿出实验报告,开始做实验,并记录实验结果。(3)汇报——交流:分组在实物投影仪上,展示实验报告,说明验证方法。学生可能会出现多种多样的实验报告。(投影)
知识与技能:学生通过对鸡兔同笼现象的观察与思考,从中发现一些特殊的规律,掌握解决问题的一般策略——列表;过程与方法:通过列表枚举的方法,积累解决问题的经验,经历列表、尝试和不断调整的过程;情感态度与价值观:在现实情境中,使学生感受到数学思想的运用与解决实际问题的联系,体会到数学的价值;重点:探索列表枚举的不同方法,找到解决问题的有效策略;难点:在自主探索过程中,掌握利用数据比较、判断、调整的方法;关键:发现规律,确定猜测的范围。三、学生学情分析:学生在三年级时已经初步尝试了应用逐一列表法解决问题,还有个别学生会套用公式解决鸡兔同笼问题,但对问题本质理解不透。学生的思维较活跃,有一定的合作学习经验。本节课向学生提供了富有挑战性的学习素材,大大激发了学生探究的欲望。
(一)、情境导入通过播放笑笑和淘气在文具店购买文具活动的视频片段,唤起学生已有的知识和经验,使学生想到“买东西要使用人民币”。又因为二年级孩子年龄较小,社会经验不足,上市场、超市购物的机会也少,对人民币只是初步的认识,对于要用到钱才能买到东西这一朴素的等价交换的原则只有初步的意识。所以借此机会激发学生想不想和笑笑、淘气一起到文具店里去购买文具呢?从而引出课题:买文具。(二)、认识小面额人民币学生在生活中经常看到人民币,有时还使用人民币,因此我首先让学生互相交流:你知道有哪些面值的人民币?根据学生的回答,老师有序地进行板书:1角、2角、5甬1元、2元、5元10元、20元、50元100元在这一环节中我仅作为引导者,引导学生相互交流,在师生互动中完成对已有知识经验的归纳与延伸,通过小组合作,互相交流,让全体学生参与学习过程,在学习过程中有意识培养学生细心观察、仔细倾听、善于总结的良好习惯。
一、教材分析:1、内容、地位、作用《买球》是北师大版小学数学第三册第七单元第76—77页的内容,本课知识是在已经掌握了2—7乘法口诀的基础上来学习的。学生已经有了编制口诀的基础,教材在口诀的引入和解决问题时设计了买足球、买蓝球的情境,让学生结合解决实际问题的过程,得出8、9的乘法口诀。在8和9的乘法口诀中,没学过的口诀只有3句,教材创设的情境中的两个问题都是针对还没有学过的口诀提出的。这部分知识是为学生以后学习乘法、除法打基础的。2、教学目标:根据数学新课程标准及本课教材的特点,确定教学目标如下:(1)让学生经历编制8,9乘法口诀的过程,在探索中掌握8,9的乘法口诀。(2)能正确运用8,9的乘法口诀解决实际问题。(3)培养学生的估算意识、合作意识,体验算法的多样化和学习数学的乐趣。3、教学重点、难点重点:掌握8、9的乘法口诀。难点:发现8、9乘法口诀的规律,探索适合自己记忆的方法。
一、激趣引新1、创设逛商场的情境。师:同学们,你们逛过商场吗?今天笑笑就来到商场买衣服(引出课题:买衣服),我们一起去看看吧!2、看图获取数学信息并交流。师:(出示课件:教材72页主题情境图)现在我们已经来到商场里了,同学们从图中知道了些什么呢?生交流:我看到商场里有上衣、裤子、裙子和围巾;我还知道了他们各自的价钱。一件上衣的价钱是59元,一条裤子的价钱是41元,一条裙子的价钱是36元,一条围巾的价钱是31元;我还知道了明明的笑笑拿了100元钱想买一件上衣和一条裙子。师:同学们观察得可真仔细呀!昨天我们已经认识了一些人民币,今天笑笑来买衣服,那么你们觉得能不能用我们学过的那些人民币来付钱呢?(生讨论)生讨论,交流意见:可是可以,但会很麻烦。因为衣服店的东西比较贵,我们学过的人民币最多才5元,算起来就很麻烦。师:同学们的想法很正确,因此今天我们就来学习一些面额较大的人民币。
大家好,今天我说课的内容是《分物游戏》。下面我将从3个方面来阐述我对本节课的理解与设计。【说教材】《分物游戏》是北师大版小学数学二年级上册第七单元的内容,属于数与代数领域的有关内容。本节课是在学生初步了解乘法的意义,会用2-5的乘法口诀口算表内乘法的基础上进行教学的。且为学生今后认识除法和分数打下扎实的基础。教材提出了3个问题,引导学生一步步加深对“平均分”的理解,初步建立“平均分”的概念。问题1:分桃子:让学生感受分法的多样性,同时感受到“每份一样多”的方法最公平;问题2:分萝卜:让学生体会平均分分法的多样性与结果的一致性,体会平均分的意义。问题3:分骨头:体会平均分的过程并尝试用画图的方法表示平均分的过程与结果。本节课以实际操作为主要教学方式,让学生在操作中逐渐理解“平均分”的意义。
1.故事情境法;2.激励法;3.多媒体辅助法;4.开放式教学法“教是为了不教”,可见教学贵在教给学生学习方法。教学中让学生充分地参与探究,动手实践,讨论交流,获取新知,领悟方法,形成解决问题的能力。五、授课过程为了实现以上教学目标,根据新课程倡导的理念和学生的年龄特征,本节课我以“笑笑过生日”这个故事情境贯穿课的始末,引导学生在“实践”中学习、在“实践”中体验,设计了如下教学流程:1、创设情境、激发兴趣:俗话说:“良好的开端是成功的一半”,而兴趣是学习入门的向导,是激发学生求知欲,吸引学生乐学的内在动力。本节课的导入部分,我创设了这样一个情境,笑笑过生日,请来了许多客人,准备了一袋苹果来招待客人,想让小朋友帮助笑笑来分一分。同学们,现在就请你们用手中的12根小棒代替苹果,动手分一分,看一看这12个苹果你怎么分?这节课,我们就来学习分苹果。(板书:分苹果)
一、说教材我今天执教的《做家务》是北师大版小学数学第三册第四单元的。这部分内容是在学生初步认识了乘法的基础上学习的,是学生编写乘法口诀的开端。这部分把乘法口诀以及它的意义结合在一起,有利于学生理解口诀的结构。教材让学生参加编口诀的活动,体会编口诀的方法,逐步学会编乘法口诀,在编写口诀的过程中知道一些探索知识的方法,提高学习数学的能力和积极性。乘法口诀是小学阶段的一个重要基础知识,是学生必须练好的基本技能之一,是以后学习多位数乘、除法必备的知识。教学目标:1、结合“摆筷子”的具体情境,经历编制2的乘法口诀的过程,进一步体会编制乘法口诀的方法。2、掌握2的乘法口诀,会用已学过的乘法口诀进行乘法计算,掌握并能够熟练地运用。从而去解决简单的实际问题。
1.认知目标:(1)结合学生的生活背景,在亲身体验中充分认识估算在生活中的意义。(2)创设情景,让学生合作探究,进而发现,总结和应用除法估算的方法。2.能力目标:(1)运用除法估算解决实际问题的能力。(2)培养学生观察比较,抽象概括的能力,并渗透联想类推的数学思考方法。(3)在培养学生估算能力的过程中发展学生思维的灵活性和创造性。3.情感目标:培养他们勇于探索尝试,能主动地发现创造,以及自主、自信、团结协作的优良品质。教学重点:使学生掌握除数是两位数的除法估算的方法。教学难点:根据题目的具体情况及运算的方便程度,灵活地进行除法估算。二、教法和学法:创设情景激发兴趣鼓励探索引导发现学生的“学”就能:敢于尝试自主探究合作交流共同发展一改教师提出问题,学生解决问题这种应答式的教学方式和学生简单记忆、机械重复的学习方式,而是充分让学生自己在生活情景体验中主动质疑、探索,互相交流,共同发展。
1.教学内容:本课是北师大版第三单元《分数》:《找最小公倍数》第一课时。是引导学生在自主参与、发现、归纳的基础上认识并建立并理解公倍数和最小公倍数的概念的过程。并总结归纳出一些找最小公倍数的方法。2.教材编写意图:五年级学生的生活经验和知识背景比较丰富,新课程标准要求教材选择具有现实性和趣味性的素材,采取螺旋上升的方式,由浅入深地促使学生在探索与交流中建立公倍数与最小公倍数的概念。在此之前,学生已经了解了整除、倍数、因数以及公因数和最大公因数。通过写出几个数的倍数,找出公有的倍数,再从公有的倍数中找出最小的一个,从而引出公倍数与最小公倍数的概念。接着用集合图形象地表示出两个数的倍数,以及这两个数公有的倍数,这一内容的学习也为今后的通分、约分学习打下的基础,具有科学的、严密的逻辑性。(二)对教材的处理意见1.教材中让学生找4和6的倍数,进而引出公倍数和最小公倍数的概念,利于学生建立对概念的理解。
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
2. 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案: 当x=4是,y= 3. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶,如图所示, , 分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.当时间t等于多少分钟时,我边防快艇B能够追赶上A。答案:直线 的解析式: ,直线 的解析式: 15分钟第五环节课堂小结(2分钟,教师引导学生总结)内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式: ;2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.
学习目标:1、知识与技能(1)会用字母、运算符号表示简单问题的规律,并能验证所探索的规律。(2)能综合所学知识解决实际问题和数学问题,发展学生应用数学的意识,培养学生的实践能力和创新意识。2、过程与方法(1)经历探索数量关系,运用符号表示规律,通过验算验证规律的过程。(2)在解决问题的过程中体验归纳、分析、猜想、抽象还有类比、转化等思维方法,发展学生抽象思维能力,培养学生良好的思维品质。3、情感、态度与价值观通过对实际问题中规律的探索,体验“从特殊到一般、再到特殊”的辩证思想,激发学生的探究热情和对数学的学习热情。学习重点:探索实际问题中蕴涵的关系和规律。学习难点:用字母、运算符号表示一般规律。学习过程:一、创景引入活动:出示一张月历,学生任意选出3×3方格框出的9个数,并计算出这9个数的和,告诉老师,老师就可以说出你所选的是哪9个数。
(1)依照此规律,第20个图形共有几个五角星?(2)摆成第n个图形需要几个五角星?(3)摆成第2015个图形需要几个五角星?解析:通过观察已知图形可得:每个图形都比其前一个图形多3个五角星,根据此规律即可解答.解:(1)根据题意得,第1个图中,五角星有3个(3×1);第2个图中,五角星有6个(3×2);第3个图中,五角星有9个(3×3);第4个图中,五角星有12个(3×4);∴第n个图中有五角星3n个.∴第20个图中五角星有3×20=60个.(2)摆成第n个图形需要五角星3n个.(3)摆成第2015个图形需要6045个五角星.方法总结:此题首先要结合图形具体数出几个值,注意由特殊到一般的分析方法.此题的规律为摆成第n个图形需要3n个五角星.三、板书设计教学过程中,强调学生自主探索和合作交流,经历观察、操作、验证、归纳、分析、猜想、抽象、积累、类比、转化等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感态度和价值观.