预设 示例:(1)斯科特,寒冷的冰雪虽然冻住了你的身体,但它却冻不住你那高尚无比的灵魂。(2)威尔逊博士,凶猛的暴风雪只是带走了你的身躯,却没有带走你那热爱科学、无私奉献的精神和对祖国的那份深沉的爱。2.以史明鉴,畅写启示。(1)畅写启示。师:作者在课文结尾满怀深情地写道:“一个人虽然在同不可战胜的厄运的搏斗中毁灭了自己,但他的心灵却因此变得无比高尚。所有这些在一切时代都是最伟大的悲剧。”联系实际,说说你所知道的“伟大的悲剧式”的人物或事件,这些人物或事件对你有什么启示?把自己的想法写出来。(2)引导交流。“伟大的悲剧式”的人物或事件及其启示:示例一:美国的航天飞机“挑战者号”在升空约72秒后突然爆炸,机上7名宇航员全部罹难。
五、细读诗歌,明确写法1.明确文章写法。这首诗中诗人描写的是自然界的道路,但是同时又暗含着诗人对人生之路的思考。这首诗中的这种写法与《假如生活欺骗了你》中的写法一样吗?为什么?预设 不一样。这首诗中诗人运用了大量形象阐释哲理,运用了许多咏物诗、哲理诗采用的象征手法,耐人寻味。对诗歌创作,弗罗斯特有独具一格的方法与原则,他认为诗歌应“始于愉悦,终于智慧”,应该给人以美的享受和思想上的启迪。从以上的学习中我们可以看出,诗人弗罗斯特用简单的语言、丰富的象征,巧妙地将自己对社会、自然、人生的了解和思考融入丰富的诗歌形象之中,运用人们熟悉又带有神秘色彩的自然场景,向人们阐释人生哲理,向人们展示他理解的人生,以及他对人生、对社会的探索。2.了解象征手法。象征是诗歌创作中经常运用的一种写作方法,诗歌一般都会通过一定的艺术形象,生动鲜明地将主题含蓄地表达出来。
我们在湖边走着,在不高的山上走着。四周的风物秀隽异常。满盈盈的湖水一直溢拍到脚边,却又温柔地退回去了,像慈母抚拍着将睡未睡的婴儿似的,它轻轻地抚拍着石岸。水里的碎瓷片清晰可见。小小的鱼儿,还有顽健的小虾儿,都在眼前游来蹦去。登上了山巅,可望见更远的太湖。——郑振铎《石湖》(生根据师展示的原文,参考、揣摩名家笔下抒情方式的运用,体会抒情描写中以情动人的魅力)2.写一段话,抒发某种情感,如幸福、喜悦、痛苦、忧伤、渴望等。200字左右。提示:(1)可以描写场面、事物,也可以叙述故事;(2)情感的抒发要有内容,有凭借;(3)根据内容特点和表达需要,选择合适的抒情方式。(生自由习作后,小组内互评、修改)师小结:情贵在真,要注意抒发自己的真情实感。朱光潜曾说过:“作者自己如果没有感动,就绝对不能使读者感动。”在写作中,情感的抒发要自然,要水到渠成。
(生动手写下来,小组交流,推荐三至五个同学全班交流)师小结:正如巴尔扎克说的“唯有细节将组成作品的价值”。同学们在写作中可恰当地添加肖像、语言、动作、景物等细节描写,用上合适的修辞手法,细化分解过程,尽最大的努力,让描写细致生动起来,让内容充实起来。【设计意图】本环节引导学生通过具体句子的分析对比,学习归纳表达细节的方法,并运用这些方法练习。这些方法可操作性强,易于学生学习和评价。三、实践运用,描摹细节1.修改习作,打磨细节。(1)在本节课开头展示的修改习作中选出两篇。(生推荐,屏幕展示)(2)师生就所选习作中的某个段落,围绕一个中心词,如喜欢、赞赏、讨厌、厌恶等,全班集体修改,学习如何运用肖像、语言和动作等细节描写表情达意。(3)展示修改片段,对比原文。(4)生点评修改效果谈收获。
预设 可能仍然有人在照料。虽然时代在变,然而雷锋精神并未消失。新时代涌现出许多热心善良、乐于助人、见义勇为、默默奉献的人,他们继续发扬着为人民服务的雷锋精神,他们的行为也表明了雷锋精神在代代相传,并发扬光大!社会因为他们的爱心、善举而变得温暖、和谐!2.作为新时代的中学生,我们该如何发扬雷锋精神?预设 时代需要雷锋精神,或许我们做不到像雷锋那样高尚,但我们可以做一些力所能及的事情,如公交车上给老人和孕妇让座,公共场合保持安静不大声喧哗,外出游玩遵守规则,遇到别人有困难,及时予以帮助等。从身边的小事端正自己的行为,自觉维护社会的公德,乐于助人、甘于奉献,才能共建和谐社会。【设计意图】此环节旨在通过阅读材料让学生明白雷锋精神一直在传承和发扬,并引导学生联系实际,在生活中践行雷锋精神,提高自我的公德意识。
我认识圣陶先生是在成都,1941年春天的一个细雨蒙蒙的上午。那时候我在华西大学中国文化研究所工作,圣陶先生在四川省教育科学馆工作。教育科学馆计划出一套供中学语文教师用的参考书。其中有一本《精读指导举隅》和一本《略读指导举隅》,是由圣陶先生和朱佩弦先生合作编写的。计划里边还有一本讲文法的书,圣陶先生从顾颉刚先生那里知道我曾经在云南大学教过这门课,就来征求我的意见,能否答应写这样一本书。我第一次见到圣陶先生,跟我想象中的“文学家”的形象全不一样:一件旧棉袍,一把油纸雨伞,说话慢言细语,像一位老塾师。他说明来意之后,我答应试试看。又随便谈了几句关于语文教学的话,他就回去了。那时候圣陶先生从乐山搬来成都不久,住家和办公都在郊外。过了几天,他让人送来一套正中书局的国文课本,供我写书取用例句。
师:(出示瀑布图片)同学们,望着眼前的瀑布,我不禁想到了唐代大诗人李白的著名诗句:飞流直下三千尺,疑是银河落九天。自然界的瀑布真是气势恢宏。今天我们将要欣赏另外一种瀑布,那就是花的瀑布。(出示紫藤萝图片,两图对照)盛开的紫藤萝真是一片辉煌的淡紫色,从空中垂下,不见其发端,也不见其终极,难怪作者说是紫藤萝瀑布。今天,我们就一起来学习当代女作家宗璞的散文《紫藤萝瀑布》。(板书文题)【设计意图】本环节设计由瀑布图片引入紫藤萝图片,在类比中让学生感受紫藤萝瀑布的美?,并思考作者为何将紫藤萝与瀑布联想到一起,二者有何相似之处。二、整体感知——梳理思路1.师范读课文,生完成任务。(1)圈出文中的易错生字,并标注拼音,注意字形。(2)思考:作者描绘了哪几幅紫藤萝画面?
梁启超(1873—1929),字卓如,号任公,别号饮冰室主人。广东新会人,思想家、学者。清朝光绪年间举人,戊戌变法(百日维新)领袖之一、中国近代维新派、新法家代表人物。幼年受传统教育,光绪十年(1884)中秀才,1889年中举。后从师于康有为,成为资产阶级改良派的宣传家。维新变法前,协助康有为一起联合在京应试举人发动“公车上书”运动,此后先后领导北京和上海的强学会,又与黄遵宪一起办《时务报》,任长沙时务学堂的总教习,并著《变法通议》为变法做宣传。戊戌变法失败后,逃亡日本。晚年任清华国学研究院导师。他一生著述颇丰,著有《清代学术概论》《中国近三百年学术史》等,著作大多收入《饮冰室合集》。文学知识议论文议论文是一种以议论为主要表达方式,通过摆事实、讲道理,直接表达作者的观点和主张的常用文体。论点、论据和论证,是议论文的三要素。
1、 谈话引入新课六一快到了。小朋友们在老师的带领下忙着布置自己的教室呢!可是他们遇到了一些数学上的问题,你能帮他们一快解决吗?2、教学例1。(1)、投影出示主题图引导学生仔细观察。说说他们遇到了什么问题?(2)、引导学生解决问题并列出算式。板书:56÷8(3)、引导学生得出算式的商。问:你是怎么计算的?(想乘算除)(4)、学生独立解决:要是挂7行呢?你能够解决吗?学生说出自己的计算结果,并把求商的过程跟大家说一说。2、 小结:在今天的学习中我们不仅帮小朋友们解决了数学问题,而且还进一步学会了利用乘法口诀来求商。在以后的除法中只要大家能够熟记口诀,就能很快算出除法的商了。
一、游戏活动激趣,认识对称物体1、游戏“猜一猜”:课件依次出示“剪刀、扫帚、飞机、梳子”的一部分,分男、女生猜。2、认识对称物体:1)师质疑:为什么女生猜得又快又准呢?2)小结:像这样两边形状、大小都完全相同的物体,我们就说它是对称物体。(板书:对称)二、猜想验证新知,认识轴对称图形(一)初步感知对称图形1、将“剪刀、飞机、扇子”等对称物体抽象出平面图形,让学生观察,这些平面图形还是不是对称的。2、师小结:像这样的图形,叫做对称图形。(板书:图形)(二)猜想验证对称图形1、猜一猜:出示“梯形、平行四边形、圆形、燕尾箭头”等平面图形,让学生观察。师:这些平面图形是不是对称图形?怎样证明它们是不是对称图形?
1、复习万以内数的认识。 请同学们先来回忆一下,我们学了万以内数的哪些知识? 回忆学了万以内数的数数、读数、写数、数的组成、数位的含义、数的顺序和大小比较、近似数以及整百、整千数的加减法……2、下面先请大家独立做教材第3题,然后集体订正。 指名让学生说一说是怎么做的?3、写一写,再读一读。① 千位上是2个千、百位上是5个百、个位上是6个一。② 二千五百零六。4、 下面复习用计数单位表示数,独立完成书上第4题,想一想是怎样做出来的。5、 复习近似数。请同学们看教材第5题,找出这段文字中哪些数是近似数?并画出来。再请同学回答。
1、教学主题图。(1)让学生独立观察教材情境图。思考问题:[1]这幅画面是什么地方?[2]你发现了画面中有什么活动内容?(按顺序)(2)在小组中互相说一说自己观察到了什么内容。你想到了什么?(3)各组代表汇报。(4)教师板书学生汇报的数据。[1]这是某个校园里的活动情景图。从图中发现了教学大楼前面的两树之间都插着4面不同颜色的旗子,升旗台上也飘着一面国旗。[2]运动场上每4人一组小朋友在跳绳。[3]篮球场上每5人一组准备打篮球比赛。[4]板报下面摆的花是每3盆摆一组,旁边还有很多盆花。(5)根据上面的信息(条件),想一想能提出用除法计算的问题吗?大家在小组议一议。
一、创设情境,导入新课 1、老师有一个好消息要告诉大家,在动物学校的旁边开了一家超市,森林里的小动物们都去那儿购物。今天,小熊哥俩正在商店里购物呢!你想看看吗? 2、教师出示情境图,教师板书课题:小熊购物二、自主探究新知 1、解决第(1)个问题“小熊该付多少钱?” 1)“仔细观察情境图,你能发现哪些数学信息?”,教师总结重要数学信息。 2)“ 大家看小熊说的话,你能提出什么问题?” 引出“小熊该付多少钱?”这个问题。 3),教师巡视搜集学生出现的不同做法 4)展示学生作业,并引导其他学生质疑“第二个算式是什么意思?”若学生中不出现第二个算式,教师引导学生将两个算式合在一起。 5)脱式计算:根据学生列出的算式,教师结合算式指导学生进行脱式计算,规范学生的书写格式。
一、教材简析 本单元教学内容主要有:除法的初步认识、用2~6的 乘法口诀求商,解决实际问题。除法的初步认识分两个层次:第一,以生活中常见的“每份同样多”的实例合活动情境,让学生建立“平均分”概念。第二,在“平均分”概念的基础上引出除法运算,说明除法算式各部分的名称。用口诀求商遵循由易到难的原则。解决问题是结合除法计算出现的。首先在除法的初步认识教学中 孕伏解决问题的内容。然后在用2~6的乘法口诀求商之后编入了解决有关平均分的实际问题和需要用乘法和除法两步计算解决简单实际问题的内容。
1,猜一猜 师:这里有一个盒子,盒子里有一朵花,谁能猜出这朵花是什么颜色的?盒子里的花儿的颜色是确定的,为什么你们会有那么多不同的答案? ……师:好,老师给一个提示:红色和黄色。会是什么颜色呢?师:要想准确猜出球的颜色,有一个统一的答案,怎么办? 师:满足你的愿望,第二个提示:不是红色的。2、猜球游戏: 小朋友看,老师这里有一个白色和一个黄色的乒乓球,现在把它们放到盒子里,我们一起来玩一个猜一猜的游戏,好吗? 师:我摸出其中一个,你猜猜是什么颜色的球呢?师:猜得准吗?老师给你们一些提示吧:我摸出的不是黄球,那我摸出的是什么颜色的球?你是怎么猜的?师:那盒子里面的是什么颜色的球呢?你是怎么猜的?小朋友们很聪明,根据老师的提示能准确地判断出球的颜色,这种方法就是我们今天要学习的简单的推理。
第一单元 圆1.圆的定义:平面上的一种曲线图形。2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.3.半径:连接圆心到圆上任意一点的线段叫作半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4.圆心确定圆的位置,半径确定圆的大小。5.直径:通过圆心并且两端都在圆上的线段叫作直径。直径一般用字母d表示。6.在同一个圆内,所有的半径都相等,所有的直径都相等。7.在同一个圆内,有无数条半径,有无数条直径。8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。用字母表示为:d=2r r =1/2d 用文字表示为:半径=直径÷2 直径=半径×2
通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好.假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V=43πR3(其中R为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?(3)买大西瓜合算还是买小西瓜合算?解析:(1)根据体积公式求出即可;(2)根据(1)中的结果得出即可;(3)求出两体积的比即可.解:(1)西瓜瓤的体积是43π(R-d)3,整个西瓜的体积是43πR3;(2)西瓜瓤与整个西瓜的体积比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤与整个西瓜的体积比是(R-d)3R3<1,故买大西瓜比买小西瓜合算.方法总结:本题能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比是解此题的关键.
解:(1)根据题意,可得y=100025x,化简得y=40x;(2)根据题设可知自变量x的取值范围为0<x<85.方法总结:反比例函数的自变量取值范围是全体非零实数,但在解决实际问题的过程中,自变量的取值范围要根据实际情况来确定.解题过程中应该注意对题意的正确理解.三、板书设计反比例函数概念:一般地,如果两个变量x,y之间 的对应关系可以表示成y=kx(k 为常数,k≠0)的形式,那么称y 是x的反比例函数,反比例函数 的自变量x不能为0确定表达式:待定系数法建立反比例函数的模型结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,从感性认识到理性认识的转化过程,发展学生的思维.利用多媒体创设大量生活情境,让学生体验数学来源于生活实际,并为生活实际服务,让学生感受数学有用,从而培养学生学习数学的兴趣.
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.
1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识. 教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.