若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
《G弦上的咏叹调》是创作于1729-1731年的管弦乐作品。后经小提琴家威廉米改编,主旋律完全在小提琴G弦上演奏,因此得名。巴赫是巴洛克时期的德国作曲家,杰出的管风琴、小提琴、大键琴演奏家,同作曲家亨德尔和D.斯卡拉蒂齐名。巴赫被普遍认为是音乐史上最重要的作曲家之一,他的创作使用了丰富的德国的音乐风格和娴熟的复调技巧。他的音乐集成了巴洛克音乐风格的精华。并被尊称为西方“现代音乐”之父,也是西方文化史上最重要的人物之一。
教学过程:一、导入新课。这节课老师和同学们一道去领略西洋音乐的发展历程。二、讲授新课。同学们,你们还认识这些乐器吗?教师播放录音,带上设计好的乐器音色音响片段,逐一提问。(1)《G弦上的咏叹调》播放录音,熟悉作品,简介作曲家的生平及其代表作品以及这部作品的创作始末。(巴赫作曲家,管风琴演奏家,教育家,欧洲“巴罗克音乐”的代表人物之一,被誉为“欧洲近代音乐之父”。代表作品有声乐曲《马太受难曲》、《b小调弥撒曲》以及管弦乐《勃兰登堡协奏曲》等)。
教学过程:一、组织教学。1、宣布上课。2、面带微笑问好:同学们好!二、导入新课。同学们在古典音乐的历史长河里,美妙的乐章不胜枚举,有的曲子愈久愈甘醇,雅俗共赏,今天我们介绍一首乐曲。三、欣赏音乐。1、播放音乐(第1次听),直接从聆听入手,请同学们在听的过程中静静思考是中国乐曲还是外国乐曲、什么乐器?2、提问乐曲用什么乐器演奏,你对它有哪些了解。3、看幻灯片介绍乐曲作者巴赫的成就和成长故事。四、欣赏分析。1、教师分段欣赏讲解该曲,启发学生画出每段的旋律线。2、通过分析力度变化,音色特点,得出乐曲所表达情绪特点。五、总结下课。
2、激发对自我的认同及喜爱之情。材料准备:1、记录卡;录像、“我”(外部、内部);我的数字档案卡人手一张;活动过程: 一、理解数的实际意义:1、这几天你们找过体内和体外的数字了吗?现在请你们记录下来。2、幼儿用记录卡进行记录,老师观察指导。3、交流记录卡内容,老师有意识地将不变和可变的数字分别记录在两张卡上。4、说说小朋友身上哪些数字是一样的?哪些数字是不一样的?为什么?
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
《0的认识和有关0的加减法》是《数学(人教版义务教育课程标准实验教科书)》一年级上册第29页的教学内容。数字0在生活中应用广泛,不同的应用体现出0的不同含义,有关0的加减法也具有其独特的规律和特点。本节课教学目标有下:1.通过游戏、活动,使学生理解0的含义,会读、会写数字0,了解数的顺序。2.使学生在情境体验中理解有关0的加、减法的含义,并能熟练计算。3.通过在数学活动中的观察、思考、讨论、探索,提高学生自主学习的意识和发现简单规律的能力。4.培养学生的想像力、语言表达能力和初步的推理应用能力。教学实录与评析:一、活动中认识0──关于0的含义和书写1.排排队──复习数的顺序。师:这节课,数字王国有几位小客人要到咱们教室找朋友。他们来了。(敲门声)
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
(一)加强领导,落实责任1.针对当前安全生产形势,街道安全生产委员会办公室成立了安全生产大检查领导小组,将安全生产各项检查工作分解到月、细化到人;坚持每月召开安全生产工作例会,完善充实各项制度措施,确保组织、制度、措施到位。2.切实加强消防安全工作领导,成立消防安全委员会、消防安全委员会办公室、消防安全服务中心(即“一委一办一中心”),深化基层消防安全管理工作,为辖区人民群众营适健康安全的生活环境。(二)开展安全生产检查,消除各类隐患1.元旦、春节期间开展烟花爆竹专项排查整治活动,累计排查x余次,确保年前和节假日期间居民群众生命财产安全。2.对辖区人口密集的场所进行消防安全检查,以排查重大火灾隐患、消防知识宣传为重点,预防各类火灾群死群伤事故的发生。今年以来,组织各社区开展危房、自建房、违建建筑等摸排检查x次。3.组织各社区开展整治私搭乱扯电线“飞线充电”现象,累计整治处理x处,有效降低小区内火灾安全隐患。4.重点排查“九小”场所、“多合一”等经营场所是否违规住人、安全疏散通道是否通畅、消防设施是否齐全、灭火器是否在有效期内等问题,现场发现问题当场落实整改。5.对辖区内所有居民小区、企业单位消防器材进行监管,定期检查消防器材是否完好有效,是否有损坏、丢失的现象,发现问题及时整改。6.对辖区居民小区楼道杂物进行专项整治,联合公用事业服务中心对小区内私搭乱建侵占消防通道情况进行了检查,对楼道内堆积的杂物、旧家具等火灾隐患进行了清理。
朴素深情悠长气息松散的节奏晴朗辽阔甜美温馨宽广的胸怀5、当学生唱两三次后,歌词就唱得较熟了,这时可以启发学生处理好歌曲中A乐句与B乐句的演唱力度,唱出mf与mp的力度对比。还可以启发他们用不同的演唱形式来表现音乐。6、教师范唱,最后全班用高位置的混声和圆润的音色来深情地演唱歌曲《牧场上的家》,尽情地表达对家乡的热爱。7、展示评价三、第三环节:拓展创编歌词(10分钟)听中编。同学们自编歌词,尽情歌唱自己的家。如:“猎德的家”、“我的家”、等。引导学生可根据我校综合实践课程的特色来创编歌词,歌唱猎德村改造前后的变化或心理感受。这时采用示范的方式展示和演唱老师创作的歌词,再让小组讨论并展示,还可让他们加上自制的打击乐器伴奏。最后是中肯的评价。
一、说教材《天上的街市》是人教版七年级上册第六单元中的第二篇课文。本单元选编的六篇文章的共同特点是通过虚构的故事或景象曲折地反映现实,或鞭挞现实生活的丑恶,或表达对美好生活的向往,目的是通过这些富有想象力的故事,激发学生的阅读兴趣,培养学生联想和想象的能力,引导学生憎恶假丑恶、向往真善美。《天上的街市》取材于我国古代牛郎织女的传说,通过丰富的联想和想象,描绘了美妙的天街景象,抒发了诗人对美好生活的向往,对理想世界的追求。诗歌意境优美,节奏舒缓,有着古典诗歌的韵味和意趣。新课程标准要求“从一个中心出发,围绕每一个学生,培养学生的语文素养”进行教学。根据单元课程目标、课程内容特点、七年级学生的实际情况,我制定了以下教学目标:1.要有感情地朗读课文,感受诗歌节奏和谐的特点。2.要让学生理解诗中联想和想象的作用,培养学生联想和想象的能力,这也是这节课的教学重点。
老师们、同学们:大家好,今天我讲话的题目是“安全教育”。xx年12月7日晚上9时许,湖南省XX市育才中学数千名学生晚自习后下课。该校教学楼虽然有4道楼梯可以离开,但由于当时正下大雨,学生们不约而同地选择宿舍最近的楼梯。在下楼过程中,有几个学生在下课的时候堵住了一楼的大路,下楼中的学生为了好玩,从上面往下挤,令一名女生跌倒,而后面的人流又不断涌上,结果在一楼至二楼的拐角处引发人踩人惨剧。造成8人死亡,26人受伤。这一严重伤亡事件告诫我们要时刻注意安全。对于每个人来说,生命都只有一次。注意安全,就是善待和珍惜生命的一种有效途径,而在现实生活中,并非人人都具有较高的安全意识。在全国各类安全事故中,学校安全事故所占的比重很大。这些安全事故涉及到食物中毒、体育运动损伤、网络交友安全、交通事故、火灾火险、溺水、毒品危害等方面。有关专家认为通过教育和预防,80%的中小学生意外伤害事故是可以避免的。
篇同学们!在这个人口密集,面积相对狭小的校园环境里,安全是我们的一直关注的重点。但调查显示,我国中小学生因交通安全、建筑物倒塌、暴力犯罪、食物中毒、溺水等意外事故死亡的人数平均每天有40多人,这些生命的逝去将给家庭带来多大的痛苦!上下楼梯不注意安全发生意外,课间追逐打闹造成骨折,课堂上被铅笔头扎伤、溺水身亡、打架斗殴以及车祸等意外事故令人防不胜防。但研究表明,通过加强自我保护意识,提高自我保护能力,若能在灾难和伤害降临的初期,及时采取正确的措施,80%的伤害是可以避免的。我们小学生正处于生理的发育阶段,心理非常单纯,最容易受到各种各样的伤害。但是,生命总是眷顾有安全意识的人,而安全意识是从日常行为中体现出来的。比如:遵纪守法,遵守交通规则,不做危及安全的游戏,不携带锋利的危险物品进校园,遇事冷静,做事多想想后果要三思而行,同学间有了矛盾要冷静解决,不要鲁莽行事。这些知识很简单,但如果做不到,我们的健康甚至生命就可能受到威胁。这段时间来学校就发生了好几起安全事故:有在课间追逐与同学相撞流血的;有爬高低杠摔下来导致骨折的;有走路不小心被车撞的手折的;有做事粗心被压伤手指的;有为抢着打乒乓球而打架的;有带一些塑料的刀具进校园弄伤同学的。在站的各位同学,大家看看那几个扎着白色绷带的受伤同学,我们要引以为鉴,要自觉遵守学校的安全常规,时刻牢记“安全至上”的理念。