之所以震惊了世界乐坛是:首先,音域达五个八度,十二个半音俱全,每枚钟可分别发出相隔三度的音,整套编钟可以自由转调演奏乐曲——就是说它可以演奏我们现代的大部分乐曲,相当与现在的钢琴。其次,钟上铸有2800多字的镂金铭文,记载了当时的律名、音名、变化音名,并且说明十二音律的律名体系在诸侯国使用的情况,从中可以看出近代乐理中的那些大、小、增、减各种音程的概念,也就是说——这些概念早在2400多年前我们已有了自己民族的独特的表达方式。可见,当时音乐理论水平发展程度有多高。正因为这样,它的出土不仅让我们的中国音乐史要为之改写,世界音乐史也要为之改写。那么之所以也震惊了科学界是因为——整套编钟使用的是铜和锡两种金属混合烧制而成的,这种金属在当时的社会就像现在的钻石一样的珍贵和稀有,是权利和财富的象征。
屈原 ( 约前340—约前278 ) 我国最早的大诗人。名平,字原;又自云名正则,字灵均。战国时楚国人。初辅佐怀王,做过左徒、三闾大夫。主张彰明法度,举贤任能,改革政治,联齐抗秦。后遭谗去职,迭遭放逐。至首都郢为秦兵攻破,遂投汨罗江而死。后世所见屈原作品,皆出自西汉刘向辑集的《楚辞》。这本书主要是屈原的作品,其中有《离骚》一篇,《九歌》十一篇:《东皇太一》、《云中君》、《湘君》、《湘夫人》、《大司命》、《少司命》、《东君》、《河伯》、《山鬼》、《国殇》、《礼魂》。《九章》九篇:《惜诵》、《涉江》、《哀郢》、《抽思》、《怀沙》、《思美人》、《惜往日》、《橘颂》、《悲回风》。《天问》一篇。等等。屈原是我国历史上伟大的爱国主义诗人,对屈原生平及作品特别是其爱国主义精神和高洁的品质,更有必要让学生了解、掌握和领会。
教学过程:1、组织教学。2、导入:由越剧《十八相送》(视频)选段导入。3、作者简介:阎肃,词作家,剧作家,河北保定人,中国人民解放军空军政治部创作员。作有歌剧脚本《江姐》,京剧脚本《红灯照》,歌词《我爱祖国的蓝天》《军营男子汉》《北京的桥》《长城长》等。还曾为电视连续剧《西游记》撰写主题歌歌词。4、歌曲分析:《化蝶》是阎肃根据小提琴协奏曲《梁山伯与祝英台》(何占豪与陈钢所做)的呈示部主部主题(爱情主题)填词而成的歌曲,小提琴协奏曲《梁祝》的音乐是根据越剧曲调写成,具有浓郁的民族风格。5、结合视频,欣赏歌曲《化蝶》,思考问题:①歌曲可以分为几段?②每段陈述表达了什么?③各段在速度、力度和音色上有什么变化?学生欣赏、讨论并发言,教师引导、归纳:①歌曲由三个相同的乐段连缀而成,每个乐段为四个乐句构成一段体,歌曲的开头有前奏(引子),中间有间奏(经过句),实际上相当于一个乐段的三次反复
教学流程:引入:音乐《远方的客人请你留下来》,课件展示乐从景观(自动切换放映)。一、侗族简介二、聆听《蝉虫歌》要完整地聆听全歌,感受、体验歌曲的基本情绪,并认识歌曲的体裁形式——混声合唱。对这首合唱来说,还应引导学生知道它包括了哪些声部及合唱中的领唱形式。可以引导学生唱一唱这首歌的两段音乐素材,初步体验歌曲的风格及衬词的作用。复听时要引导学生着重体验、领会歌曲的民族风格及合唱所形成的艺术效果。三、乐曲分析《蝉虫歌》的歌词较短。从实质上看,这种歌的衬词要比歌词重要的多。因为其衬词部分才是歌的主体。通常,歌手们要凭借歌曲的优美的旋律及令人遐想的和声来展示自已动人的歌喉及高超的演唱技巧。这首歌采用了支声性二声部合唱的形式。歌曲的主旋律有时在第一声部,有时又在第二声部。因此,演唱者既要演唱主旋律,也要以和声去伴合主旋律,从而表现蝉虫在树上鸣叫的情景。《蝉虫歌》是一首女声合唱。第一声部由2—3人领唱。整个合唱的音色,给人以明亮、柔美、清雅的印象。
教学过程一、导入教师导语:上节课我们了解了古巴黑人歌曲《依内妈妈》,今天让我们再次走进拉丁美洲,继续了解那里的音乐文化。二、欣赏《桑巴》教师导语:拉丁美洲音乐以其旋律的美妙、节奏的独特、和声的浓郁、色彩的丰富,呈现于世界乐坛。它无比的热情、充沛的活力、神奇的风貌,为世人瞩目。下面就让我们来体验那拉丁美洲音乐的灵魂——来自足球的故乡:热情奔放、粗犷豪迈的古巴“桑巴”和阿根廷的“探戈”吧。教师导语:首先让我们欣赏一段“桑巴舞”。教师操作:播放视频桑巴舞。教师讲解:桑巴(samba),起源于巴西,它是以黑人强烈而丰富的节奏为基础,融入欧洲的旋律和多声音乐而产生的。其特点:大调式、二拍子、短促的滚动性复合节奏。所用乐器有鼓、摇响器等。桑巴舞的音乐热烈,舞态富有动感,舞步摇曳多变,深受人们的喜爱。 教师操作:播放《桑巴》音频。教师导语:让我们大家一起随着音乐跳起来吧!学生活动:边听音乐边拍打节奏,学做简单的“桑巴”舞蹈动作,并随音乐跳舞。三、课堂小结本节课通过欣赏乐曲《桑巴》,同学们进一步的了解认识了拉丁美洲的多元音乐文化。又通过对比欣赏,启发学生探讨了拉丁美洲音乐是印第安音乐、欧洲音乐、非洲黑人音乐三种音乐的融合。
教学过程一、导入观看非洲自然景观视频,引入非洲音乐话题。教师提问:画面及音乐把我们带到了世界上的哪个地方?学生活动:边听边看边想这段音乐是描写世界上的哪个地方?教师讲解:非洲地处赤道附近,热带气候。这里独特的地形地貌、风土人情才孕育出了千姿百态的音乐文化。你们想不想了解非洲?这节课就让我们走进非洲,共同领略非洲的音乐文化。学生活动:聆听教师讲解“非洲音乐”。教师讲解:非洲大陆,以撒哈拉沙漠为界,分为两大部分,撒哈拉沙漠以南,称为南非,撒哈拉沙漠以北,称为北非。北非的音乐,深受阿拉伯文化的影响,几乎可以说完全阿拉伯化了,人们通常将北非音乐归于阿拉伯音乐,撒哈拉沙漠以南不少地区还完全保存着自己的传统音乐,我们所说的非洲音乐通常指这些地区各种土著黑人的传统音乐。二、学唱歌曲《丰多姆佛罗姆》1.教师播放歌曲《丰多姆佛罗姆》,提问:这首歌曲的情绪如何?表达了怎样的思想感情?学生活动:完整地欣赏,思考乐曲的情绪和表达的思想感情。(抒情性的音乐情绪,表达对家乡的思念之情。)2.介绍作品。教师讲解:这是一首典型的非洲民歌。歌曲以生动的语言叙述了黑人战斗的情境。
教学过程:一、聆听《行街》1、导入师:让我们来听听江南民间乐曲,看看这个美丽的地方的音乐给我们什么感受?2、初听乐曲师:歌曲给你什么感觉?有什么特点?3、理解江南丝竹师:“江南丝竹”是流行于江苏南部、浙江西部、上海地区的丝竹音乐,也是民间器乐形式的统称,音乐柔美秀丽。4、复听乐曲师:再来听听歌曲,说说丝竹的音色是怎样的?5、演唱主题音乐6、再听乐曲师:让我们再来听听音乐,说说音乐给你的印象是怎样的?二、组织下课小结:你还知道哪些关于江南的音乐?
教学过程:一、导入——刘禹锡《陋室铭》引入江南丝竹。 师:同学们,你们有没有读过刘禹锡的《陋室铭》。 同学:有。 师:那有谁能背诵给老师听听吗? (学生背诵) 师:里面有一句“无丝竹之乱耳,无案牍之劳形。”里面丝竹是什么意思? (学生回答) 师:里面的“丝竹”可以说是不喜欢的声音。其实丝竹是弦乐器与竹管乐器之总称,大多数的时候泛指音乐。 师:“江南丝竹”是流行于江苏南部、浙江西部、上海地区的丝竹音乐,也是民间器乐形式的统称,音乐柔美秀丽。接下来我们来欣赏下江南八大丝竹乐曲之一的《行街》。二、欣赏《行街》。 师:这首曲子的音乐风格是什么? (生答) 师:行街是旧时队伍在街上行进用的乐曲,所以乐曲风格豪放健朗,变化丰富,保留了民间乡土气息的特点。这首乐曲又叫《行街四合》,因为经常用于婚嫁迎娶和节日庙会巡演而得名。全曲分为慢板和快板两部分,慢板轻盈优美,快板则热烈欢快,且层层加快,把喜庆推上高潮,具有浓厚的生活气息。三、小结 中国民族音乐博大精深,一方水土养育一方人,南北方音乐风格迥异各具特色,不同风格的音乐将风土人情描述得淋漓尽致,感谢劳动人民的的聪明智慧,让我们在音乐中就能领略各地的人文风采。
教学过程:一、组织教学:师生问好。(同学们今天的状态真精神,希望你们表现的也会同样精彩。)二、导入:师:同学们,你们知道什么叫丝竹吗?今天老师给大家带来了一首关于丝竹的歌曲。师:你们听出了这是什么乐器演奏的吗? 师:这是江南地区的一首歌曲,使用丝竹演奏的。 三、新课教学: (一)聆听歌曲: 师:同学们,我们一同来听,这首歌曲表现了什么样的情绪? 生:豪放健朗,变化丰富,洋溢着一派喜庆的景象。师:在这首歌曲的演奏形式上大家有什么发现呢? 师:小结,进行评价。 师:让我们再次聆听,同学们可以仔细聆听这首歌曲的表演特色?(二)简介歌曲这首《行街》,因为经常用于婚嫁迎娶和节日庙会巡演而得名。全曲分为慢板和快板两部分,慢板轻盈优美,快板则热烈欢快,且层层加快,把喜庆推上高潮,具有浓厚的生活气息。 师:让我们再来听听歌曲,看谁最能说出歌曲的音乐特点? (三)小结: 歌曲以柔美秀丽的音乐风格,表现了江南地区的美丽风貌。四、表演: (一)完整演唱歌曲: 师:同学们!你能带着这种情感的变化来演唱,表现这首歌曲吗?
1.会用度量法和叠合法比较两个角的大小.2.理解角的平分线的定义,并能借助角的平分线的定义解决问题.3.理解两个角的和、差、倍、分的意义,会进行角的运算.一、情境导入同学们,如图是我们生活中常用的剪刀模型,现在考考大家,剪刀张开的两个角哪个大呢?二、合作探究探究点一:角的比较在某工厂生产流水线上生产如图所示的工件,其中∠α称为工件的中心角,生产要求∠α的标准角度为30°±1°,一名质检员在检验时,手拿一量角器逐一测量∠α的度数.请你运用所学的知识分析一下,该名质检员采用的是哪种比较方法?你还能给该质检员设计更好的质检方法吗?请说说你的方法.解析:角的比较方法有测量法和叠合法,其中测量法更具体,叠合更直观.在质检中,采用叠合法比较快捷.
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
新建成的红星中学,首次招收七年级新生12个班共500人,学校准备修建一个自行车车棚.请问需要修建多大面积的自行车车棚?请你设计一个调查方案解决这个问题.解析:决定自行车车棚面积的因素有两个,即自行车的数量与每辆自行车的占地面积.因此收集数据的重点应围绕这两个因素进行.解:调查方案如下:(1)对全体新生的到校方式进行问卷调查.调查问卷如下:你到校的方式是骑自行车吗?A.经常是 B.不经常是C.很少是 D.从不是(2)根据调查问卷结果分类统计骑自行车的人数;(3)实际测量或估计存放1辆自行车的大约占地面积;(4)根据学校的建设规划、财力等因素确定自行车车棚的面积.方法总结:确定调查方案时必须明确两个问题:(1)需要收集哪些数据?(2)采用什么方式进行调查可以获得这些数据?探究点三:从图表中获取信息小冰就公众对在餐厅吸烟的态度进行了调查,并将调查结果制作成如图所示的统计图,请根据图中的信息回答下列问题:
若a,b,c都是不等于零的数,且a+bc=b+ca=c+ab=k,求k的值.解:当a+b+c≠0时,由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,则k=2(a+b+c)a+b+c=2;当a+b+c=0时,则有a+b=-c.此时k=a+bc=-cc=-1.综上所述,k的值是2或-1.易错提醒:运用等比性质的条件是分母之和不等于0,往往忽视这一隐含条件而出错.本题题目中并没有交代a+b+c≠0,所以应分两种情况讨论,容易出现的错误是忽略讨论a+b+c=0这种情况.三、板书设计比例的性质基本性质:如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性质:如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab经历比例的性质的探索过程,体会类比的思想,提高学生探究、归纳的能力.通过问题情境的创设和解决过程进一步体会数学与生活的紧密联系,体会数学的思维方式,增强学习数学的兴趣.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
请写出 推理过程:∵ ,在两边同时加上1得, + = + .两边分别通分得: 思考:请仿照上面的方法,证明“如果 ,那么 ”.(3) 等比性质:猜想 ( ),与 相等吗?能 否证明你的猜想?(引导学生从上述实例中找出证明方法)等比性质:如果 ( ),那么 = .思考:等比性质中,为什么要 这个条件?三、 巩固练习:1.在相同时刻的物高与影长成比例,如果一建筑在地面上影长为50米,高为1.5米的测竿的影长为2.5米 ,那么,该建筑的高是多少米?2.若 则 3.若 ,则 四、 本课小结:1.比例的基本性质:a:b=c:d ;2. 合比性质:如果 ,那么 ;3. 等比性质:如果 ( ),五、 布置作业:课本习题4.2
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
1. 小明的脚长23.6厘米,鞋号应是 号。2.小亮的脚长25.1厘米,鞋号应是 号。3.小王选了25号鞋,那么他的脚长约是大于等于 厘米且小于 厘米。小结:刚才同学们都体会到了分组编码使原来繁多,无叙的数据简化、有序。因此分组、编码是整理数据的一种重要的方法,在工商业、科研等活动中有广泛的应用(四)反馈练习课内练习以下是某校七年级南,女生各10名右眼裸视的检测结果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)这组数据是用什么方法获得的?(2)学生右眼视力跟性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?(五). 归纳小结,体味数学快乐通过本节课的学习,你有那些收获?(课堂小结交给学生)数据收集的方法:直接观察、测量、调查、实验、查阅文献资料、使用互连网等。整理数据的方法:分类、排序、分组编码等。(学生可能还会指出鞋码和脚长之间的关系等)
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积