用你的语言描述一下配方法解一元二次方程的基本步骤和需注意的问题。 教师引导学生进行反思、归纳配方法解一元二次方程的基本思路、步骤及注意事项。巩固对课堂知识的理解和掌握,同时进一步体会解一元二次方程时降次的基本策略和转化的思想。 六、布置作业分层布置作业,既巩固本节主要内容,又有让学有余力的学生有思考和提升的空间。思考题为后面深入研究配方法,完善对配方法的认识做准备。 同时让学生感受到数学学习在实际生活中的作用,感受数学的美。五、板书设计我将板书分成了两部分,重点突出这节课用配方法解一元二次方程的步骤,在配以适当的练习,简单明了,重点突出。六、教学评价与反思本节课我根据学生的特点采用合作交流探究式学西方法教学,让学生动起来,感受数学学习的乐趣。让学生更加爱学数学。
1.多媒体的合理应用,可极大的激发学生的学习兴趣,提高教学效果.在本节课的“情境引入”这一教学环节中,用媒体展示的人影、皮影、手影的精彩图片,用媒体播放的皮影戏、手影戏视频片断给学生以视觉冲击,产生了视觉和心理的震撼,这样在课堂“第一时间”抓住了学生的注意力、极大的激发了学生的学习热情,将十分有利于后面教学活动的开展,提高课堂教学效果.2.附有挑战性的“问题(或活动)”、层层深入的“问题串”可激发学生的探索欲望,培养创新精神,拓展思维能力.在本节课“探究活动”这一教学环节中的“做一做”设计的4个活动,由简单的“模仿”到“创作设计、观察思考”循序渐进、挑战性逐渐增大,不断激发学生的探索欲望,引人入胜,培养创新精神,拓展能力.再如,在本节课“数学运用”这一教学环节中的“例2”设计的2个问题层层深入,现实情境味很浓,学生做起来饶有兴趣.
第三环节。尝试练习,信息反馈。让学生尝试练习:课本p152第3题,并引导中下学生看p152例题,教师及时点拨讲评。△教师安排这一过程,完全放手让学生自主进行,充分暴露学生的思维过程,展现学生生动活泼、主动求知和富有的个性,使学生真正成为学习的主体,使因式分解与整式的乘法的关系得到正强化。第四环节。小结阶段。这是最后的一个环节,教师出示“想一想”:下列式子从左边到右边是因式分解吗,为什么?学生展开讨论,得到下列结论:A.左边是乘法,而右边是差,不是积;B.左右两边都不是整式;C.从右边到左边是利用了因式分解的变形方法进行分解。由此可知,上式不是因式分解。进而,教师呈现因式分解定义。△教师安排这一过程意图是:学生一般到临近下课,大脑处于疲劳状态,注意力开始分散。
五、课堂设计理念本节课着力体现以下几个方面:1、突出问题的应用意识。在各个环节的安排上都设计成一个个问题,使学生能围绕问题展开讨思考、讨论,进行学习。2、体现学生的主体意识。让学生通过列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作交流,得出问题的不同解法;让学生对一节课的学习内容、方法、注意点等进行归纳。3、体现学生思维的层次性。教师首先引导学生尝试用算术方法解决问题,然后再引导学生列出含未知数的式了,寻找相等关系列出方程,在寻找相等关系、设未知数及作业的布置等环节中都注意了学生思维的层次性。4、渗透建模思想。把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。
活动6:通过随堂小测的方式辨别圆的相关概念。目的:让学生准确地掌握直径与弦,弧与半圆的关系,以及准确理解等圆和等弧的概念。活动7:让学生分组讨论“投圈游戏”,解决生活中的实际问题。目的:提高学生运用所学圆的知识,解决实际问题的能力;也是为了巩固圆的定义,同时再次激发学生的学习兴趣。活动8:给学生一个草坪情境,要求作出半径为5m的圆,并说明原理。目的:提高学生的综合运用能力,并巩固圆的定义。活动9:让学生根据树木的年轮的直径和生长年龄,计算树木每年的生长情况。目的:巩固圆的知识。活动10:让学生回顾本节课的重要内容并布置课后作业。目的:前者的目的是梳理圆及圆的相关元素的概念,便于识记、理解和运用。后者的目的是:第一题,检测学生的动手能力和提高学生学习数学的兴趣;第二题,检测学生对本节课的重要内容的理解情况;第三题,检测学生的综合运用能力。以上是我对本节课内容的理解和设计。
二、教学要求:1、教幼儿能够对大小区别较明显的4-6个物体,按从小到大或从大到小的顺序进行排序。2、复习5以内的数数。三、教学准备1、实物套娃1套2、大小不同颜色不同的圆形塑料片一组5张,每人一组。
2.过程与方法经历与他人交流算法的过程,能有条理地叙述自己的思考过程,能计算100以内数的连加运算。3.情感态度和价值观在计算过程中初步养成认真、细心、耐心检查的良好学习习惯。【教学重点】 会分析数量关系,并计算100以内数的加法。【教学难点】 运用100以内数的加法解决简单的实际问题。【教学方法】 合作、探究、交流【课前准备】 多媒体课件【课时安排】 1课时【教学过程】一、创设情境、引出问题1.出示情境图:同学们,你们喜欢套圈游戏吗?你们看,淘气和笑笑也来参加好玩的套圈游戏,让我们一起来看一看。这个游戏是怎么玩的,你看懂了吗?从每个小动物前面的得分我们知道离淘气和笑笑越远的小动物套中后得分越高。而且机灵狗告诉我们规则是“每人投3次,每套中的得0分,总分高的获胜”。判断胜负,有时不光要看胜的场次,还要看什么?分数,分高者胜。要引导学生明白得分是根据图中套中的小动物得到的。机灵狗说的是什么意思,谁听懂了?2.引导学生有序观察图意,并让学生看图说一说:从图中你知道哪些数学信息?
说教学难点:图形的放大与缩小的原理是“大小改变,形状不变“。针对小学生的年龄和认知特点,教材中“图形的放大与缩小”从对应边的比相等来进行安排,而对应角的不变也是形状不变必备的条件,是学生体会图形的相似所必需的。学生在学习的过程中很有可能会质疑到这一问题。(为什么直角三角形只需要同时把两条直角边放大与缩小?)所以我把“学生在观察、比较、思考和交流等活动中,感受图形放大、缩小,初步体会图形的相似。(对应边的比相等,对应角不变)”做为本节课的难点。说教法、学法:通过直观演示,情景激趣,结合生活让学生形成感性认识;引导学生经过观察、猜想、分析、操作、质疑、小组交流、合作学习、验证等过程形成理性认识。教学过程:(略)
[设计意图]节环节的设置是为了使学生在掌握不等式性质的基础之上,加以拓展的作业,使课程的内容不但能满足全体学生需求,更能满足学有余力的学生得到更大收获,从数轴上获取信息来完成填空,从而体现数形结合的思想,学生通过参与活动,体会挑战成功的喜悦,并且他们的求胜心理得到了满足,沉醉在知识给他们带来的快感中完成本节课的学习,(六)课堂小结最后,凯旋归来话收获:通过本节课的学习,你收获到了什么?学生们都积极的举手回答,说出了各种各样的收获,比如:1、学会了不等式的三条基本性质2、学会了用字母来表示不等式的性质3、学生不等式与等式的区别等等;学生在回答的时候,老师加以评价和表扬并展示主要内容;这里教师要再次强调,特别注意性质3,两边同乘(或除以)一个负数时,不等号的方向要改变,数学思想的方法是数学的灵魂,这节课我们体验了三种数学思想,一是类比的思想,二是数形结合的思想,三是分类讨论的思想,
四、教学过程分析为有序、有效地进行教学,本节课我主要安排了以下教学环节:(一)复习导入主要复习一下三种统计图,为接下来介绍三种统计图的特点及根据实际问题选取适当的统计图做好知识准备。(二)问题探究选取课本上“小华对1992~2002年同学家中有无电视机及近一年来同学在家看电视的情况”的3个调查项目,进而设计3个探究问题从而加深学生对每一种统计图的进一步认识,至此用自己的语言总结出每一种统计图的特点。(三)实践练兵这一环节通过2个实际问题的设计,通过学生对问题的分析、讨论,使学生认识到适当选取统计图有助于帮助人们去更快速、更准确地获取信息。(四)课堂小结总结这一节课所学的重点知识,这部分主要是让学生自己去总结,看看这节课自己有哪些收获。(五)作业布置进一步巩固本节课所学的知识,达到教学效果。以上就是我对这节课的见解,不足之处还望批评和指正。
经过探究发现只有10与11出现的概率最大且相等(在探究的过程中提醒学生按求等可能性事件的概率步骤来做,在判断是否等可能和求某个事件的基本数上多启发和引导,帮助学生顺利突破难点。)及时表扬答对的学生,因为这个问题整整过了三个世纪,才被意大利著名的天文学家伽利略解决。后来法国数学家拉普拉斯在他的著作《分析概率论》中,把伽利略的这个解答作为概率的一个基本原理来引用。(适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的)8、课堂小结:通过这节课的学习,同学们回想一下有什么收获?1、基本事件和等可能性事件的定义。2、等可能性事件的特征:(1)、一次试验中有可能出现的结果是有限的。(2)、每一结果出现的可能性相等。3、求等可能性事件概率的步骤:(1)审清题意,判断本试验是否为等可能性事件。
(3)例题1的设计,一方面是帮助学生从生实际问题背景中逐步建立古典概型的解题模式;另一方面也可进一步理解古典概型的概念与特征,重点突破“等可能性”这个理解的难点。 采用学生分组讨论的方式完。在整个活动中学生作为活动设计者、参与者.主持者;老师起到组织和指导的作用。为了让学生进一步认识和理解随机思想,认识和理解概率的含义—概率是一种度量,是对随机事件发生可能性大小的一种度量.让学生观察图表,得出对称的规律。预计学生在构建等可能性事件模型时要花一些时间。(4)例题1的拓展设计:看学生能否能在例1的基础上利用类比的思想来建构数学模型,并得出求事件 A包含的基本事件数常用的方法有树状图法,枚举法,图表法,排列组合法等方法。适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的
(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.2、议一议:骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开始下降.夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.3、如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题:
练习3、先化简,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通过例题和联系将所学知识升华,提升)练习4、动动脑。(让学生进一步感知生活中处处有数学)(四)、畅谈收获、拓展升华1、本节课你学到了什么?依据是什么?整式的乘法存在什么没有解决的问题?(同桌互讲,师生共同小结)2、布置作业:习题1.9知识技能1四、说课小结本堂课我主要采用引导探索法教学,倡导学生自主学习、尝试学习、探究学习、合作交流学习,鼓励学生用所学的知识解决身边的问题,注重教学效果的有效性。学生在合作学习中,可以活跃课堂气氛,消除心理压力,在愉快的环境中学习知识,有效地拓展学生思维,成功地培养学生的观察能力、思维能力、合作探究能力、交流能力和数学学习能力。但由于本人对新课标和新教材的理解不一定十分到位,所以在教材本身内在规律的把握上,会存在一定的偏差;另外,由于对学生的认知规律认识不够,所以教学活动的设计不一定十分有效。所有这些都有待教学实践的检验。
Ⅵ.活动与探究某种“15选5”的彩票的获奖号码是从1~15这15个数字小选择5个数字(可以重复),若彩民所选择的5个数字恰与获奖号码相同,即可获得特等奖.小明观察了最近100期获奖号码,发现其中竟有51期有重号(同一期获奖号码有2个或2个以上的数字相同),66期有连号(同一期获奖号码中有2个或2个以上的数字相邻).他认为获奖号码不应该有这么多重号和连号,获奖号码可能不是随机产生的,有失公允.小明的观点有道理吗?重号的概率大约是多少?利用计算器模拟实验可以估计重号的概率.[过程]两人组成一个小组,利用计算器产生1~15之间的随机数.并记录下来,每产生5个随机数为一次实验,每组做10次实验,看看有几次重号和连号.将全班的数据汇总集中起来,就可估计出1~15之间的整数中随机抽出5个数出现重号和连号的概率.
1、数数格子,认清方向(完成想想做做第1题)设计意图:本题在于让学生认清平移的方向和距离,感受平移的不同方法。在教学中,让学生自己独立思考完成,自由发言。鼓励学生说出不同的平移方法。2、小试牛刀(完成想想做做第2题)设计意图:本题主要是让学生掌握按要求画平移后的图形。这是本节课的难点。在教学中,先让学生独立画图,教师巡视作图情况,对有困难的学生给予指导。在学生完成作图后,投影部分学生的作品,交流平移的过程与方法。最后在多媒体课件上展示画法。.3、平移的运用(“想想做做”第3题)设计意图:本题在于使学生学会运用平移的知识画平行线,体会平移的价值。(四)课堂小结,升华提高提问:今天你有哪些收获?设计意图:以问题为载体,引领学生对本节课的归来总结。让学生再次理解图形的斜向平移可转换成横向平移和竖向平移。
在解决问题的过程中,学生使用到了生活中常见的工具——标杆、镜子等,这些小工具摇身一变就成了学生学习用的学具。使学生感觉到利用身边的工具完全可以达到解决问题的目的。八、本节得失本节课意在更好地让学生在实际操作中掌握相似三角形的判定与性质。这节课我感觉成功之处在于:1、立足于问题情境的创设。在课堂教学中创设良好的学习情境,充分激发学生求学热情。当学生的学习投入到教师创设的学习情境中,就会形成主动寻求知识的内在动力。学生在这种学习情境中主动学习到知识,比讲授给他们的要丰富得多,而且更能激发他们的学习兴趣。2、注意培养学生的问题意识。问题解决后,教师应让学生从解决的问题出发,通过对题目的拓展,引导学生用新的思维去再次解决新问题,这样不仅让学生掌握了更多的知识,还能让学生的思维得到升华。3、培养学生自主探索、合作交流的学习方法和习惯。
接着,引导学生回答命题1的题设、结论,教师把命题1的图示画在黑板上,得到以下的数学表达式。已知:如图,△ABC∽△A/B/C/、△ABC与△A/B/C/的相似比是K,AD、A/D/是对应高。求证:AD/A/D/=K首先让学生回忆,证明线段成比例学过哪些方法,接着引导学生分析证明思路:要证AD/A/D/=K,根据图形学生能找到含对应高和对应边的两对三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要证AD/A/D/=K,则应有△ADB∽△A/D/B/,由条件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。随后,学生口述教师板书规范的证明过程。接着问学生还有哪些证明方法?同理可证得其他两边上的对应高的比等于相似比,所以命题1具有一般性。而对于命题2、命题3的数学表达式和证明方法与命题1类似,所以为了提高教学效率,用投影依次将命题2、命题3的已知、求证和题图显示出来,并指导学生课堂练习证明这两个命题。
准备200张卡片,在上面分别写上1,2,3,…,200,将卡片装入布袋里.第一次从布袋中盲目地取出一张,把号码记下,这个号码就算是消息的发布者,暂时不放回。第二次,从布袋中盲目取出三张,记下号码,这算是第一批听到消息的三个人,留一张暂时不放回(这张卡片代表下一次传播消息的人),另两张放回。把第一张卡片放回,然后第三次从布袋中盲目取三张卡片,记下号码.这算是第二批听到消息的三个人.留一张暂时不放回,其余两张放回.把第二次摸出的并暂时留下的一张卡片收回,然后第四次从布袋中摸……看一下,15次后,有没有被重复摸出的?上述消息传播问题是很有实用价值的,比如,在医疗事业中,必须十分注意疾病的重复感染问题,因为传染病的传播就像消息传播一样,既然重复听到消息的可能性是很大的,当然重复感染的可能性也是很大的。
注意强调概念理解不到位的方面:① tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”,若用三个字母表示角则“∠”不能省略,如“∠ABC的正切表示为tan∠ABC”;② tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;③ tanA不表示“tan”乘以“A”。通过给出直角三角形的任两边的长,让学生求∠A,∠B的正切及时强化学生对概念的3、正切函数的应用理解通过实际问题的解答进一步了解梯子的倾斜程度、坡度与正切函数的关系;对学生进行正切的变式训练,让学生理解不管角的位置如何改变,只要角的大小不变则其正切值是不变的。练习的安插注意梯度,让不同的学生有不同的发展。4、最后小结本节课的知识要点及注意点五、达标测试具体思路:把几个问题分为四个等级,方便对学生的了解;通过评价让学生对自己的学习也做到心中有数。