⒉教幼儿学习,掌握正确的刷牙方法,养成每天早晚刷牙的好习惯。教学重点:知道保护牙齿的重要性,学习刷牙的方法。教学难点:掌握正确的刷牙方法。教学准备:⒈听过故事《小熊拔牙》;⒉小熊头饰一个,并请一位老师扮演小熊;⒊牙齿模型一副;幼儿人手一把牙刷,一支牙膏,一只杯子;⒋录音机,磁带《刷牙歌》。
我们美丽的上海建筑中,“桥”无疑也是一个亮点,他为我们生活带来了方便,在前一活动“各种各样的桥”中,他们对桥已有了初步的认识,知道桥的基本组成部分,同时通过资料的收集及调查,也发现了桥的多样性,特殊性,更是对造桥的工作者产生的敬佩之情,因此孩子们把该经验及体验延伸到了本体性游戏的建构活动中,各个都想来造桥。为了更好的满足他们的需要,及爱探究的愿望,我提供了丰富的材料,让孩子们在自己的探索过程中尝试造桥,并在桥上载物,同时也根据他们的年龄特点出发,我还在该活动中提供了记录表,在边记录边探索中当一回小小造桥者。 活动目标:1.尝试利用替代物来构建纸桥。2. 探索使桥面牢固的方法,并进行记录。活动准备:替代物若干(如:厚薄不一的纸、积木、纸杯、书、纸盒、塑料瓶等)记录表笔桥的图片若干前期经验准备:观察并讨论过桥,对桥的功用及种类有所认识
活动目标:1、感知变色龙的特性,尝试选择与场景相同的颜色给变色龙涂色,学习涂色的正确方法。2、在和变色龙说说玩玩游戏的情景中体验游戏的快乐。活动准备:花园背景图一幅、变色龙人手一份、和场景颜色相同的各色炫彩棒(红色、绿色、黄色、咖啡色、兰色、橘黄色)、透明的变色龙。 活动过程:一、故事导入《它躲到哪里去了》,引起幼儿的兴趣。1、你们听过变色龙的故事吗?为什么叫他变色龙呢?(变色龙有一种其他小动物都没有的本领,是什么呢?)莎莉的变色龙今天就在我们的教室里,看谁能把它找出来? 教师可以数123让幼儿找,如果幼儿找不到可以稍加提示。师:找到了!变色龙躲在窗上,它变成了什么颜色?要是眼睛不尖就找不到了。(做惊奇状)咦?窗子上有一个什么东西啊?让我把它请过来看一看,哦,原来是莎莉的变色龙。
活动目标:1、认识“>”和“<”,理解不等式的含义,理解大小的相对性。。2、学习把不等式转变为等式。3、培养幼儿思维的灵活性和可逆性,锻炼幼儿运用数学知识解决实际问题的能力。 活动分析: 重点认识“>”和“<”,理解不等式的含义,掌握相等与不相等的转化;难点是掌握“>”和“<”的方向。 活动准备:1、7只蜜蜂,5只蝴蝶的图片。 2、4朵红花、六朵黄花的图片。3、数字卡片“7”、“5”、“4”、“6”以及“>”、“<”、“=”卡片若干。4、数字头饰两套,小猴子头饰若干。5、数字小兔图一张,有关数字卡若干。6、数字卡10张(装入猫头包内),铃鼓一个,磁带、录音机等。
实录: 今天区别“1和许多”是第二次非式活动,活动前,我给小朋友提出了“今天请大家去找一找上次没玩过的玩具玩一玩。活动开始了,小朋友们开始寻找自己上次没玩过的玩具。有的拿了听一听、有的拿了放一放、还有的拿了插管子。徐炜韬选了摆一摆的玩具,看到一张纸上贴着两张图片,一张是一只萝卜,另一张是许多的气球,徐炜韬开始对着这两张图片看了又看,接着他就点着萝卜和气球说出其名称,讲了一会儿,他看见盘子里有许多卡片,看了看,他拿了一条鱼点数了起来,“1”,点好后,就放在一边,,这时他又拿了一张树叶的卡片,这下他发现不是“1”而是有“许多”树叶,他马上伸出手指点数了起来,一边数,一边念着“1、2、3、4、5、6、7数到最后他发现自己有点数不清,于是他放在了一边。
2、培养幼儿对数活动的兴趣。活动准备:水果篮、苹果、猕猴桃、龙眼等新鲜水果、纸制水果篮若干、纸制水果。活动过程:一、猜水果出示水果篮(水果篮用布盖好)师:这个是什么啊?生:篮子。师:你们觉得这个篮子装了什么?生:苹果、月饼(梨、饼干……)师:想不想知道篮子里到底装了些什么东西呢?生:想师:会是什么呢?我请你们来摸摸看,摸好以后告诉其他小朋友,你摸到了什么?请幼儿来摸师:你摸到什么?(别告诉大家是什么,你让大家猜猜)生:它是圆圆的,柄是凹进去的。(是苹果)教师拿出来给大家看是不是苹果再请一个幼儿来摸师:你摸到什么?生:它是椭圆形的,毛毛的(是橘子……)师:想不想知道是什么啊?(教师拿出水果给大家看)生:猕猴桃……
二、重点及难点: 重点:感知8以内的数量 难点:能排除物体大小、颜色的干扰,理解数的实际意义。三、活动准备: 1、纸箱制战斗机(与幼儿人数相等)内有一个,炮弹8发。 2、恶魔城堡情境、小动物若干。四、活动流程: 语言引导、激发兴趣→情景练习、感知数量→排除干扰、巩固练习。五、活动过程:(一)、语言引导、激发兴趣 说明:请幼儿当小小飞行员上蓝天练本领,登上飞机。
2、让幼儿大胆想象,运用几何图形进行拼搭创造。活动准备:图形宝宝图片、背景图、固体胶、纸、环境布置活动重点:复习巩固对几何图形的认识活动难点:运用几何图形进行拼搭创造活动流程:引出课题 游戏巩固 活动延伸
2、尝试用半圆形和长方形表现蘑菇房子的主要特征。 3、体验版画独特的作画方法,享受创造的快乐。 活动准备: 吹塑版画纸、笔头坚硬的笔人手一份。 颜料和毛笔若干。 范画一张。 幼儿用书人手一册。 活动过程: 一、教师和幼儿一起打开幼儿用书,共同阅读故事《蘑菇房子》,引出主题。
2、能用双色刷色,并会用辅助材料添加背景。 3、培养幼儿良好的卫生习惯。活动准备: 1、各种汽车玩具,如卡车、轿车、公共汽车等。 2、颜料、有孩子事先剪好的图形等。活动过程: 1、通过玩具汽车,引起幼儿兴趣。 (1)笛笛笛,谁来了?(出示公共汽车)公共汽车是什么样的呀?(请孩子仔细观察,能用完整的语言来表述。如公共汽车有长长的身子,有圆圆的轮子等。) (2)这又是什么车呀?(小轿车)小轿车有时什么样的呀?(请孩子通过与公共汽车比较来说说。)
活动目标:1、了解制作版画的步骤,学习用版画的方法表现房子。 2、尝试用各种几何图形表现房子的主要外形特征。 3、体验制作版画的独特手法,享受创造的快乐。 活动准备:1、宣纸、剪刀、笔头坚硬的笔、白纸人手一份。 2、水粉颜料、吹塑纸、底纹笔、浆糊、彩色纸、稍后一些的纸板若干。 3、范画一张,幼儿用书人手一册。 活动过程: 1、教师和幼儿一起打开幼儿用书,共同阅读故事《蘑菇房子》,引出主题。 2、认识蘑菇房子的特征,了解作画方法。 3、引导幼儿阅读纸版画《房子》,感知各种造型的房子。 引导幼儿看图,猜一猜,这些画是用什么方法制作的? 教师示范制作纸版画:用剪刀将纸板剪成各种形状,并在纸上拼贴出各种房子,接着用黑色、或彩色的颜料涂满白纸,然后,将宣纸覆盖在涂满颜料的画上,并用手压印后,轻轻揭起,放在一旁晾干。
解析:先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),∴当x>1时,2x>kx+b.∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选C.方法总结:本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在y轴上(或下)方部分所有的点的横坐标所构成的集合.三、板书设计1.通过函数图象确定一元一次不等式的解集2.一元一次不等式与一次函数的关系本课时主要是掌握运用一次函数的图象解一元一次不等式,在教学过程中采用讲练结合的方法,让学生充分参与到教学活动中,主动、自主的学习.
解:四边形ABCD是平行四边形.证明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.方法总结:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.三、板书设计1.平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形.2.平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形.在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨.判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手.在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上.
解析:(1)根据题设条件,求出等量关系,列一元一次方程即可求解;(2)根据题设中的不等关系列出相应的不等式,通过求解不等式确定最值,求最值时要注意自变量的取值范围.解:设购进A种树苗x棵,则购进B种树苗(17-x)棵,(1)根据题意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:购进A种树苗10棵,B种树苗7棵;(2)由题意得17-x172,所需费用为80x+60(17-x)=20x+1020(元),费用最省需x取最小整数9,此时17-x=17-9=8,此时所需费用为20×9+1020=1200(元).答:购买9棵A种树苗,8棵B种树苗的费用最省,此方案所需费用1200元.三、板书设计一元一次不等式与一次函数关系的实际应用分类讨论思想、数形结合思想本课时结合生活中的实例组织学生进行探索,在探索的过程中渗透分类讨论的思想方法,培养学生分析、解决问题的能力,从新课到练习都充分调动了学生的思考能力,为后面的学习打下基础.
解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b2a、(-b2a,4ac-b24a)一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)
【教学目标】(一)教学知识点能够利用描点法作出函数 的图象,并根据图象认识和理解二次函数 的性质;比较两者的异同.(二)能力训练要求:经历探索二次函数 图象的作法和性质的过程,获得利用图象研究函数性质的经验.(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解. 【重、难点】重点 :会画y=ax2的图象,理解其性质。难点:描点法画y=ax2的图象,体会数与形的相互联系。 【导学流程】 一、自主预习(用时15分钟)1.创设教学情境我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型二】 在同一坐标系中判断二次函数和一次函数的图象在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()解析:∵一次函数和二次函数都经过y轴上的点(0,c),∴两个函数图象交于y轴上的同一点,故B选项错误;当a>0时,二次函数的图象开口向上,一次函数的图象从左向右上升,故C选项错误;当a<0时,二次函数的图象开口向下,一次函数的图象从左向右下降,故A选项错误,D选项正确.故选D.方法总结:熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质(开口方向、对称轴、顶点坐标等)是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 二次函数y=ax2+c的图象与三角形的综合
雨后天空的彩虹、河上架起的拱桥等都会形成一条曲线.问题1:这些曲线能否用函数关系式表示?问题2:如何画出这样的函数图象?二、合作探究探究点:二次函数y=x2和y=-x2的图象与性质【类型一】 二次函数y=x2和y=-x2的图象的画法及特点在同一平面直角坐标系中,画出下列函数的图象:(1)y=x2;(2)y=-x2.根据图象分别说出抛物线(1)(2)的对称轴、顶点坐标、开口方向及最高(低)点坐标.解析:利用列表、描点、连线的方法作出两个函数的图象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描点、连线可得图象如下:(1)抛物线y=x2的对称轴为y轴,顶点坐标为(0,0),开口方向向上,最低点坐标为(0,0);(2)抛物线y=-x2的对称轴为y轴,顶点坐标为(0,0),开口方向向下,最高点坐标为(0,0).方法总结:画抛物线y=x2和y=-x2的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.