一、教学内容人教版第六册第二单元第一课时(口算除法)。二、知识背景《口算除法》是在学生掌握了表内乘、除法,一位数乘多位数的基础上进行教学的,为后面学生掌握除数是两位数的除法,学习除数是多位数的除法奠定了扎实的知识和思维基础。本节课教材在编排上注意体现新的教学理念,将计算教学与解决问题相结合,让学生感受到学习数学的实用价值。本节课教材安排了主题图和例1,主题图为我们提供的资源是一幅运送蔬菜的场景图,通过小精灵的问题“你能提出什么问题?”引出除数是一位数的口算除法。三、教学目标:知识与技能1、理解掌握口算整十、整百、整千数除以一位数的算理,能正确熟练地口算。2、培养学生自主探究能力、抽象概括能力,解决问题的能力,数学表达能力,渗透转化、迁移类推的数学思想方法。
二、说教材的三维目标和重难点1、知识目标:进一步熟悉面积单位的大小,掌握相邻面积间的进率是100,会进行简单的换算。2、能力目标:培养学生观察、比较、抽象、概括、判断、推理能力及空间观念。3、情感目标:培养学生生生合作的学习精神,乐于助人的集体精神。重点:掌握相邻面积间的进率是100。难点:掌握相邻面积间的进率是100。三、说设计意图对于这节课的教学设计,我们组的教师们尝试从不同的角度去理解教材,先后尝试了多种不同的教学设计,下面仅结合课堂教学中的三大环节(开课、活动操作、练习设计)来简述一下我们的研究过程及我们对每种设计的感受。1、第一环节开课的研究关于开课的研究,第一次试教,学生回忆长度单位复习长度单位间的进率引导到面积单位的研究。
教学流程:一、游戏导入,创设情景好的开始是成功的一半,教师教学开始时,让学生作一个辨认的方向的小游戏,能最短时间内吸引学生注意力,并有效的对旧知识进行了复习。接着教师创设了一个学习情景,帮助迷路的小朋友找到路,让学生在贯穿始终的情景中进行学习。二、讲授新课教师利用多媒体软件出示一张路线路,让学生通过仔细观察,描述出通过路线图如何坐车。在这里教师应对一些常识性的东西进行简单的讲解,譬如出发的起点,终点,坐车坐几站。学生通过小组交流合作进行自学,在小组内交流自己的意见和看法,当遇到较难的问题时,教师可适当引导,但主要还是学生通过自己观察和小组内的交流得出正确的答案,这样才能培养学生的自学能力。三、巩固练习,拓展思维课堂练习是整个教学环节中必不可少的一个部分,教师设计练习时,必须要考虑到学生的共性和个性,课题练习是针对全体学生的,这就是教师必须要考虑的共性。个性则是教师要注意学生间的差异,因材施教。
三、说教学设想课本中以立叔叔从某城市乘火车去北京为情境,我进行了改编,以中秋节来临之际,月饼店进货为主线,通过四个环节进行教学:创设情境,激发兴趣;探索交流,获取新知;巩固强化,内化新知;归纳总结。(一)创设情境,激发兴趣:现在正逢中秋来临之际,因此,以月饼店进货为背景素材,通过课前的谈话,让学生尽快的溶入课堂,并且根据学生喜欢吃月饼的天性,在屏幕上出示大月饼的图片,激发了学生学习的兴趣,随即立刻引入正题,出示表格,让学生寻找数学信息,提出数学问题面对一些以前学过的数学问题,及时的解决,而面对今天需要解决的数学问题,直接让学生列出算式,并通过估算,然后引出课题。(二)自主探索,获取新知:在这个环节中,进行以下四个层次的教学:1、让学生用自己喜欢的方法计算245×12
『我国著名的数学家华罗庚曾说过:“要善于退、足够的退,退到最原始又不失重要的地方,是学好数学的一个诀窍。”激发认知冲突后,我提供学具,引导操作、合作探究。解决问题的过程,也是经历统一面积单位的必要性,认识用正方形表示面积单位的过程。』5.认识常用的面积单位。(1)要求自学第73、74页的内容并思考下面问题:①常用的面积单位有哪些?②边长是多少的正方形面积是1平方厘米、1平方分米、1平方米?③要求:把重要的语句用笔勾画出来。(2)检查自学情况。①常用的面积单位有哪些?(板书:常见的面积单位:平方厘米、平方分米、平方米)②拿一拿:从学具中分别拿出1平方厘米的正方形,1平方分米的正方形。(出示面积单位教具)
3、小结比较观察三种方法,提出问题:为什么同一个问题有三种不同的解决方法?学生交流,教师小结:先解决的问题不同,选择的信息不同,图形拼摆的不同,解决的方法就不同,体现数形结合的思想。相同点是:无论思路如何,都是用连乘的方法解决问题。板书课题:解决问题——两步连乘应用题生活中还有很多这样的清况,想不想再尝试一下。(三)联系生活,优化方法,拓展深化,学校有特异为这些参加比赛的同学们购买了矿泉水,出示画面:共有20箱矿泉水,每箱24瓶,每瓶2元,请问学校共要支付多少钱?学生独立完成观察和思考的角度不同,先后选择的信息不同,所以同一道题有不同的解决方法。看来大家多用连乘的方法解决问题有了进一步的理解。生活中类似这样的问题很多,再来看一看:学校定好了水,付了钱,总得运回来吧.出示搬运车搬水到卡车上的画面:搬运车一次搬4摞,一摞3箱,一箱24瓶,请问搬运车一次能搬多少瓶?
4、读歌词:老师带领同学有感情的朗读两边歌词。5、解决难点:二分音符和附点四分音符的节奏练习。6、教师范唱歌曲:7、学生演唱歌曲:老师找出学生唱的不准确的地方。8、教师指导学生演唱:通过老师和学生的对比唱来改正学生的错误。9、师生接唱。10、男女生接唱。师:歌词中说到我是草原小牧民,手拿扬鞭多自豪!那么我们在唱这首歌的时候应该用怎样的情绪呢?11、学生齐唱歌曲 :(三)、拓展部分:1、观看课件蒙古族的民俗:师:同学们这是一首蒙古族的民歌,同学们对蒙古族有哪些了解呢?2、欣赏《筷子舞》:师:可以看出蒙古族是一个能歌善舞的民族,让我们一起来欣赏一段具有蒙古族代表的舞蹈《筷子舞》吧!3、师表演筷子舞:师:同学们看老师给你们带来了什么?生:筷子。师:老师还给同学们准备了一段筷子舞想看吗?那就给老师点掌声吧!
3、拓展要求:在学生对歌曲有了一定的了解之后,我会让学生在歌词中适当的地方加入语气词,使歌曲更生动、形象。例如:“妈妈告诉我,家乡没有山”这句歌词,显得有点惋惜和遗憾之情,我觉得用“唉”比较好,下面的就分组讨论。每小组派一个代表唱出自己组里填的语气词。在所有组里的语气词里选一组最好的,确定下来。全班一起演唱,并加上确定的语气词。唱歌比赛:将学生分4个组,一组高声部、一组低声部、一组加语气词、一组加打击乐器(如沙锤、双响筒、碰玲),增强他们的合作意识和合作默契。4、小结在课堂小结时我先安排了学生谈一谈这节课的感想,如:这节课你学到了什么?歌曲中你最喜欢那一句?而且对那些有创意的学生我还及时的发给他们小奖品。在本课的教学中我以表扬和鼓励为主,随时引导学生在音乐活动中开展自评互评和老师的随堂评价,以提高学生的乐感和审美能力。
一个情境:“歌中的小牧童把牛背当成了飞船,想象着长大后成为宇航员的样子。同学们,如果你骑在牛背上,双手握着方向盘的时候,你会想到了什么?”学生就能很快地联想到开汽车、开飞机等。再引导他们把想法替换到歌词中唱一唱。这一学习方式不仅为学生创设了民主、宽松、自由的氛围,更激发了学生的创新思维,增强了自信心。4.我利用学生好动、表现欲望强和模仿能力强的特点,鼓励学生根据歌曲创编简单的动作进行表演,并和他们一起表演,从而拉近了师生的距离,激发了学生的学习兴趣,学生的学习积极性也得到充分的调动。第五环节:欣赏图片拓展知识这一环节主要是让学生了解有关航天知识,拓宽学生的文化视野,提高学生的人文素养。引发学生对自然科学的热爱,启发学生从小要树立远大的理想。第六环节:总结全课升华情感鼓励学生从小树立远大的理想,努力学习、用于探索,以实现美好的理想。小结:以上是本课的总阐述,不到之处请指正
2. 讲小故事介绍:哈里?亚诺什设计意图:了解音乐创作北京,讲故事的形式很新颖,有趣,能调动学生的积极性。3. 初听乐曲 思考问题:? 在乐曲中你听到钟声了吗?钟声多还是少?还听到其他声音了吗?? 这首乐曲是由一种乐器演奏的,还是由很多乐器演奏的?? 对比上一部作品《灵隐钟声》,这首乐曲给你的感觉是什么?? 你觉得哈里?亚诺什来到了什么地方?森林 战场 王宫设计意图:学生能带着问题有目的的去聆听,然后学生根据问题谈自己的感受3. 介绍作曲家 柯达伊4. 聆听 主题音乐一共重复了几次?每一次都是连着的还是有别的内容?并且把相同的主题音乐用√来表示,不相同的用×来表示。设计意图:方法简单,通俗易懂。学生听辨后能较快作出选择。5. 介绍回旋曲式设计意图:了解曲式结构6. 用小铃铛在主题音调出现时为乐曲伴奏设计意图:用伴奏的形式来表演体现音乐
(4)演一演视障生由于生理缺陷,在他们的头脑中很难形成动作形体概念,用情景教学法,使学生身临其境,要求他们不一定按歌曲要求的动作表现,只需要他们把那种对音乐的理解用自己的方式表现出来,边听音乐边表演.通过这样的训练,提高学生的肢体语言能力,同时能大胆发挥想象,做自己对音乐理解的动作,通过动作使其更深刻的理解歌曲.对于低视生让他们通过看课件及对歌曲的理解,创遍简单的舞蹈动作,使其与歌曲的情节相融合,更深刻的体味歌曲内涵.(5)复听歌曲一遍让学生仔细的听乐曲,感受乐曲所带给的独特感受,让他们融入到乐曲中,展开想象,发展他们的空间想象力和创造力,同时提高他们的鉴赏水平.六、课堂小结感谢从小养育我们的父母;感谢一直关心着我们的父母;感谢为我们而操劳的父母……要感谢的太多太多了,就让我们怀着一颗感恩的心,报答我们的父母吧!
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 红白1 (白1,白1) (白2,白1) (红,白1)白2 (白1,白2) (白2,白2) (红,白2)红 (白1,红) (白2,红) (红,红)由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
由上表可知,共有6种结果,且每种结果是等可能的,其中两次摸出白球的结果有2种,所以P(两次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9种结果,且每种结果是等可能的,其中两次摸出白球的结果有4种,所以P(两次摸出的球都是白球)=49.方法总结:在试验中,常出现“放回”和“不放回”两种情况,即是否重复进行的事件,在求概率时要正确区分,如利用列表法求概率时,不重复在列表中有空格,重复在列表中则不会出现空格.三、板书设计用树状图或表格求概率画树状图法列表法通过与学生现实生活相联系的游戏为载体,培养学生建立概率模型的思想意识.在活动中进一步发展学生的合作交流意识,提高学生对所研究问题的反思和拓展的能力,逐步形成良好的反思意识.鼓励学生思维的多样性,发展学生的创新意识.
方法总结:在分辨一个图形是否为多边形时,一定要抓住多边形定义中的关键词语,如“线段”“首尾顺次连接”“封闭”“平面图形”等.如此,对于某些似是而非的图形,只要根据定义进行对照和分析,即可判定.探究点二:确定多边形的对角线一个多边形从一个顶点最多能引出2015条对角线,这个多边形的边数是()A.2015 B.2016 C.2017 D.2018解析:这个多边形的边数为2015+3=2018.故选D.方法总结:过n边形的一个顶点可以画出(n-3)条对角线.本题只要逆向求解即可.探究点三:求扇形圆心角将一个圆分割成三个扇形,它们的圆心角的度数之比为2:3:4,求这三个扇形圆心角的度数.解析:用扇形圆心角所对应的比去乘360°即可求出相应扇形圆心角的度数.解:三个扇形的圆心角度数分别为:360°×22+3+4=80°;360°×32+3+4=120°;
1、 如图4-25,将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流2、 画一个半径是2cm的圆,并在其中画一个圆心为60º的扇形,你会计算这个扇形的面积吗?与同伴交流。教师对答案进行汇总,讲解本题解题思路:1、 因为一个圆被分成了大小相同的扇形,所以每个扇形的圆心角相同,又因为圆周角是360º,所以每个扇形的圆心角是360º÷3=120º,每个扇形的面积为整个圆的面积的三分之一。2、 先求出这个圆的面积S=πR²=4π,60÷360=1/6扇形面积=4π×1/6=2π/3【设计意图】运用小组合作交流的方式,既培养了学生的合作意识和能力,又达到了互帮互助以弱带强的目的,使学习比较吃力的同学也能参与到学习中来,体现了学生是学习的主体。
同理,图③中,三角形的三边长分别为2,5,3;同理,图④中,三角形的三边长分别为2,5,13.∵21=22=105=2,∴图②中的三角形与△ABC相似.方法总结:(1)各个图形中的三角形均为格点三角形,可以根据勾股定理求出各边的长,然后根据三角形三边的长度是否成比例来判断两个三角形是否相似;(2)判断三边是否成比例,可以将三角形的三边长按大小顺序排列,然后分别计算他们对应边的比,最后由比值是否相等来确定两个三角形是否相似.三、板书设计相似三角形的判定定理3:三边成比例的两个三角形相似.从学生已学的知识入手,通过设置问题,引导学生进行计算、推理和归纳,提高分析问题和解决问题的能力.感受两个三角形相似的判定定理3与全等三角形判定定理(SSS)的区别与联系,体会事物间一般到特殊、特殊到一般的关系.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力,培养学生与他人交流、合作的意识和品质.
(一)导入新课三角形全等的判定中AA S 和ASA对应于相似三 角形的判定的判定定理1,SAS对应于相似三 角形的判定的判定定理2,那么SSS 对应的三角形相似的判定命题是否正确,这就是本节研究的内容.(板书)(二) 做一做画△ABC与△A′B′C′,使 、 和 都等 于给定的值k.(1)设法比较∠A与∠A′的大小;(2)△ABC与△A′B′C′相似吗?说说你的理由.改变k值的大小,再试一试.定理3:三边:成比例的两个三 角形相似.(三)例题学习例:如图,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度数.解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三边成比例的两个三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、巩固练习四、小结本节学 习了相似三角形的判定定理3,使用时一定要注意它使用的条件.
探究点二:三角形内角和定理的推论2如图,P是△ABC内的一点,求证:∠BPC>∠A.解析:由题意无法直接得出∠BPC>∠A,延长BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得证.证明:延长BP交AC于D,∵∠BPC是△ABC的外角(外角定义),∴∠BPC>∠PDC(三角形的一个外角大于任何一个和它不相邻的内角).同理可证:∠PDC>∠A,∴∠BPC>∠A.方法总结:利用推论2证明角的大小时,两个角应是同一个三角形的内角和外角.若不是,就需借助中间量转化求证.三、板书设计三角形的外角外角:三角形的一边与另一边的延长线所组成的 角,叫做三角形的外角推论1:三角形的一个外角等于和它不相邻的两 个内角的和推论2:三角形的一个外角大于任何一个和它不 相邻的内角利用已经学过的知识来推导出新的定理以及运用新的定理解决相关问题,进一步熟悉和掌握证明的步骤、格式、方法、技巧.进一步培养学生的逻辑思维能力和推理能力,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣.
教学目标:1.会画直棱柱(仅限于直三棱柱和直四棱柱)的三种视图,体会这几种几何体与其视图之间的相互转化。2. 会根据三视图描述原几何体。教学重点:掌握直棱柱的三视图的画法。能根据三视图描述原几何体。教学难点:几何体与视图之间的相互转化。培养空间想像观念。课型:新授课教学方法:观察实践法一、实物观察、空间想像观察:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过 想像,再抽象出这两个直棱柱的主视图,左视图和俯视图。绘制:请你将抽象出来的三种视图画出来,并与同伴交流。比较:小亮画出了其中一个几何体的主视图、左视图和俯视图,你认为他画的对不对?谈谈你的看法。拓展:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试。
1.经历从不同方向观察物体的活动过程,发展空间观念.2.在观察的过程中,初步体会从不同方向观察同一物体可能看到不同的形状.3.能识别从三个方向看到的简单物体的形状,会画立方体及简单组合体从三个方向看到的形状,并能根据看到的形状描述基本几何体或实物原型.一、情境导入观察图中不同方向拍摄的庐山美景.你能从苏东坡《题西林壁》诗句:“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”体验出其中的意境吗?你能挖掘出其中蕴含的数学道理吗?让我们一起探索新知吧!二、合作探究探究点一:从不同的方向看物体如图所示的几何体是由一些小正方体组合而成的,从上面看到的平面图形是()解析:这个几何体从上面看,共有2行,第一行能看到3个小正方形,第二行能看到2个小正方形.故选D.