解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法总结:矩形的折叠问题是常见的问题,本题的易错点是对△BED是等腰三角形认识不足,解题的关键是对折叠后的几何形状要有一个正确的分析.三、板书设计矩形矩形的定义:有一个角是直角的平行四边形 叫做矩形矩形的性质四个角都是直角两组对边分别平行且相等对角线互相平分且相等经历矩形的概念和性质的探索过程,把握平行四边形的演变过程,迁移到矩形的概念与性质上来,明确矩形是特殊的平行四边形.培养学生的推理能力以及自主合作精神,掌握几何思维方法,体会逻辑推理的思维价值.
2.已知:如图 ,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形吗?说明理由。答案:四边形ACBE是矩形.因为CD是Rt△ACB斜边上的中线,所以DA=DC=DB,又因为DE=CD,所以DA=DC=DB=DE,所以四边形ABCD是矩形(对角线相等且互相平分的四边形是矩形)。四、课堂检测:1.下列说法正确的是( )A.有一组对角是直角的四边形一定是矩形 B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形 D.对角互补的平行四边形是矩形2. 矩形各角平分线围成的四边形是( )A.平行四边形 B.矩形 C.菱形 D.正方形3. 下列判定矩形的说法是否正确(1)有一个角是直角的四边形是矩形 ( )(2)四个角都是直角的四边形是矩形 ( )(3)四个角都相等的四边形是矩形 ( ) (4)对角线相等的四边形是矩形 ( )(5)对角线相等且互相垂直的四边形是矩形 ( )(6)对角线相等且互相平分的四边形是矩形 ( )4. 在四边形ABCD中,AB=DC,AD=BC.请再添加一个条件,使四边形ABCD是矩形.你添加的条件是 .(写出一种即可)
在△AEF和△DEC中,∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS),∴AF=DC.∵AF=BD,∴BD=DC;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形.∴AB=AC,BD=DC,∴∠ADB=90°.∴四边形AFBD是矩形.方法总结:本题综合考查了矩形和全等三角形的判定方法,明确有一个角是直角的平行四边形是矩形是解本题的关键.三、板书设计矩形的判定对角线相等的平行四边形是矩形三个角是直角的四边形是矩形有一个角是直角的平行四边形是矩形(定义)通过探索与交流,得出矩形的判定定理,使学生亲身经历知识的发生过程,并会运用定理解决相关问题.通过开放式命题,尝试从不同角度寻求解决问题的方法.通过动手实践、合作探索、小组交流,培养学生的逻辑推理能力.
1. _____________________________________________2. _____________________________________________你会计算菱形的周长吗?三、例题精讲例1.课本3页例1例2.已知:在菱形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是菱形ABCD各边的中点,求证:OE=OF=OG=OH.四、课堂检测:1.已知四边形ABCD是菱形,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm.2.菱形ABCD的周长为40cm,两条对角线AC:BD=4:3,那么对角线AC=______cm,BD=______cm.3.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为 4.已知菱形的面积为30平方厘米,如果一条对角线长为12厘米,则别一条对角线长为________厘米.5.菱形的两条对角线把菱形分成全等的直角三角形的个数是( ).(A)1个 (B)2个 (C)3个 (D)4个6.在菱形ABCD中,CE⊥AB,E为垂足,BC=2,BE=1,求菱形的周长和面积
方法三:一个同学先画两条等长的线段AB、AD,然后分别以B、D为圆心,AB为半径画弧,得到两弧的交点C,连接BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?请你画一画。通过探究,得到: 的四边形是菱形。证明上述结论:三、例题巩固课本6页例2 四、课堂检测1、下列判别错误的是( )A.对角线互相垂直,平分的四边形是菱形. B、对角线互相垂直的平行四边形是菱形C.有一条对角线平分一组对角的四边形是菱形. D.邻边相等的平行四边形是菱形.2、下列条件中,可以判定一个四边形是菱形的是( )A.两条对角线相等 B.两条对角线互相垂直C.两条对角线相等且垂直 D.两条对角线互相垂直平分3、要判断一个四边形是菱形,可以首先判断它是一个平行四边形,然后再判定这个四边形的一组__________或两条对角线__________.4、已知:如图 ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F求证:四边形AFCE是菱形
(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为23,∴菱形的面积为4×23=83.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以尝试证出这个四边形是平行四边形,然后用定义法或判定定理1来证明菱形.三、板书设计菱形的判 定有一组邻边相等的平行四边形是菱形(定义)四边相等的四边形是菱形对角线互相垂直的平行四边形是菱形对角线互相垂直平分的四边形是菱形 经历菱形的证明、猜想的过程,进一步提高学生的推理论证能力,体会证明过程中所运用的归纳概括以及转化等数学方法.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.
一、单项选择题1.违法行为是指出于过错违法法律、法规的规定,危害社会的行为。下列违法行 为属于行政违法行为的有 ( )①欠债不还 ②谎报险情 ③殴打他人 ④故意杀人A.①② B.②③ C.①③ D.③④2.一般违法行为和犯罪的共同点是 ( )A.都违反了民事法律 B.都要受到刑罚处罚C.承担相同法律责任 D.都具有社会危害性3.“人生不能越界,底线必须坚守”。这句话说明人们行为的底线是 ( )A.守诚信 B.讲道德 C.不违法 D.懂礼仪4.犯罪的最本质特征是 ( )A.严重社会危害性 B.刑事违法性C.应受刑罚处罚性 D.触犯法律性 5.初中生小辉因沉迷网络游戏,经常偷父母的钱。后来发展为盗窃,走上了违法犯罪的道路。这告诉我们 ( )①不良行为必然会发展成违法犯罪行为②网络游戏有害健康,我们应远离网络③预防违法犯罪需要强化防微杜渐意识④要理性参与网络生活,做网络的主人A.①② B.②③ C.①③ D.③④
二是狠抓城区亮化绿化提质。严格按照《x城区亮化提质工作实施方案》《x城区绿化提质工作实施方案》抓好城区重要节点的亮化绿化建设,发放《致全区商铺、企业、酒店一封信》x份,积极宣传引导临街、临河住房、商铺、酒店参与城区亮化绿化提质大行动中来,摸排、发动x至x、x、x沿线x家商铺酒店及x家临街机关单位开展亮化建设,点亮了城市夜空。三是补齐市政设施建设短板。按照“花小钱、办实事”的原则,开展“城市体检”,排查城市污水、排水井x个,更换污水井盖x个、排水井x个;排查城市路灯x个,更换维修x个;对城区x座桥梁进行安全排查,整改安全隐患x处;维护主次干道x处计x公里,维修人行道青石板x平方,更换城区损坏破损的座椅x把,疏通雨水管道x米,整治“空中管线”x处。
一个数各个位上的数字之和如果是3的倍数,那么,这个数一定是3的倍数。否则,这个数就不是3的倍数。4、检验结论。(1)我们从100以内的数中发现了规律,得出了3的倍数的特征,如果是三位数甚至更大的数,3的倍数的特征是否也相同呢?(2)利用100以内数表来验证。(3)延伸到三位数或更大的数。如:573、753、999、1236、2244、7863……(4)学生自己写数并验证,然后小组交流,观察得出的结论是否相同。在本环节,我用充足的时间让小组代表上讲台展示成果,说出各自的思考过程,对学生的回答我给予充分的肯定和表扬,引导学生验证自己的发现是否正确,最后达成共识:一个数的各位上的数的和是3的倍数,这个数就3的倍数(板书)。这样便巧妙地突出本课的重点,突破了本课的难点。
《0的认识和有关0的加减法》是《数学(人教版义务教育课程标准实验教科书)》一年级上册第29页的教学内容。数字0在生活中应用广泛,不同的应用体现出0的不同含义,有关0的加减法也具有其独特的规律和特点。本节课教学目标有下:1.通过游戏、活动,使学生理解0的含义,会读、会写数字0,了解数的顺序。2.使学生在情境体验中理解有关0的加、减法的含义,并能熟练计算。3.通过在数学活动中的观察、思考、讨论、探索,提高学生自主学习的意识和发现简单规律的能力。4.培养学生的想像力、语言表达能力和初步的推理应用能力。教学实录与评析:一、活动中认识0──关于0的含义和书写1.排排队──复习数的顺序。师:这节课,数字王国有几位小客人要到咱们教室找朋友。他们来了。(敲门声)
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
一、演练的目的1、确保汛期事故发生时能够及时采取有效措施疏散车辆及人员,确保司乘人员生命安全,将损失降到最低。2、检验高速公路各部门及消防、医疗等联勤单位的相互协作,进一步深化联勤联动机制。3、检验XX高速养护应急抢险施工队伍快速反应、集结水平及应急物资储备能力。4、检验一路四方应急处置专项预案的适用性、完整性和针对性。
一、指导思想 以贯彻执行《国务院督导委员会办公室关于开展校园欺凌专项整治的通知》精神为指导,全面落实以人为本的科学发展观,切实开展校园欺凌专项整治,进一步增强广大师生人身安全防范意识和自我保护能力,建立健全学校安全工作的长效机制,彻底消除各类诱发校园欺凌事件的安全隐患,使校园安全工作逐步走上科学化、规范化、法制化的轨道,努力构建安全、和谐校园,切实保障广大师生身心健康不受伤害。 二、主要目标 1.防范校园欺凌事件安全工作组织机构健全,责任明确,制度完善,学校领导高度重视校园安全工作。 2.防范校园欺凌事件安全知识教育普及率达到100%,广大师生的安全意识和自我保护能力明显提高。
1、学生在经过楼梯因拥挤而发生踩踏事故时,所在教师要及时切断后面学生的通行、抢扶被压倒的学生。 2、一旦发生踩踏,所在老师要马上报告学校领导,学校领导接报后,立即组织教师对后面拥挤的学生进行疏散。 3、对受伤学生进行逐个了解情况,一般伤情,学校应立即把所受伤的学生送到当地医院检查治疗,有严重受伤者,学校要立即拨打“120”请求救助,将重伤学生送到指定医院救治。
一、感受地震给人类带来的灾难. 1、讲述地震来临时的情况。 看录像 提问:小朋友看了什么?(幼儿回答如:幼儿说说自己的见识和感受)再看一遍录像 知道遇到地震时不要慌,要听从老师的指挥,有序地撤离可以避免危害的发生。 那地震来了我们要怎么办?(幼儿讨论)
一、完善安全制度,落实工作责任 1、开学初学校跟各班、科老师签订《安全工作目标责任书》,各班跟学生家长签订《安全责任书》并在开学前一天学习安全守则等,做到谁主管,谁负责,谁在岗,谁负责的职责要求,明确班主任,科任老师和学生家长在学生安全管理和教育方面的职责,切实做到层层落实,人人有责,建立学校、老师、家长共管安全工作。 2、以安全管理制度管理人,约束人,让每位老师、学生注意每个环节,特别是校门外的河流,公路上的行走,教学楼后边的井等都要以防患于未然。 3、采取报告制度,无论是在哪个环节问题,要一边报告一边及时处理。如学生在校园玩耍受伤,谁见谁报告并及时处理,不准小事漫延为大事,以确保事故最小化。 二、加强检查、排除隐患 1、开学初工作落实就开展大检查,严格排除隐患。如:对学校校舍,教学设备,消防设施,学校食堂等进行全面检查,确认无一安全隐患。集体认可,如果对检查出问题,学校立即组织整改,以确保教育教学安全畅通。 2、要求各班安全工作放在首位,做到警钟长鸣,日日做检查,早操由少先队大队部负责登记检查,值日教师每天集队时强调安全注意事项。 3、食堂方面,负责管理食堂的老师,每天都要到食堂去检查,工作上岗是否有隐患,值日购菜是否有腐烂蔬菜、豆类是否煮熟等注意检查。 三、宣传教育,常抓不解 1、每周利用红旗下讲话对学生进行《中小学生守则》、《小学生日常行为规范》、《中小学生礼仪常规》、《校园安全教育》、《预防未成年人保护法》等安全知识教育外,各班还利用《思想品德》课,对学生进行各方面安全教育,如:交通、防火、防毒等各种形式教育,从中提高学生的安全意识。 2、向家长及监护人宣传学生校外安全注意事项,家长如何管理好子女在家庭的各种安全行为及学校校外安全的防护措施,增强学生家长重视子女安全的自觉性和防范意识。 3、为了培养学生有良好行为习惯,确保校园无事故发生,每天集队解散时,不准学生在楼道拥挤,不准在操场上乱跑、不准打架斗殴,回家路上不准踩踏庄稼,养成一个从小讲文明有礼貌品学兼优的好儿童。 这一学期来,通过全体师生的共同努力,同学之间没有出现“x学欺负小同学”现象,学校无校舍、教学设施等方面安全隐患,无火灾事故、无偷盗事件等发生。 总之,学校消防安全工作是学校工作的重要组成部分。做好这项工作维护学校稳定生存、发展的需要。我校消防安全工作,特加大工作力度,促使我校消防安全工作再上新的台阶。
(一)自然灾害监测系统1.概念:自然灾害监测系统是由国家、区域及地方等各级组织,通过不同平台对自然灾害进行监测和分析的网络系统。2.作用:灾前预警、灾中跟踪、灾后评估以及提出减灾决策方案3.世界和我国灾害监测系统的发展情况①已经形成了遍布世界各地、相互交织的灾害监测和预警网络。②我国已经运用现代科学技术建立起各种自然灾害监测系统(二)遥感技术在自然灾害监测中的作用1.遥感(RS)技术的特点:观测范围广、信息获取量大、获取速度快、实时性好和动态性强等。从空间尺度看,遥感具有全球观测能力,可从多波段、多时相和全天候角度获得全球自然灾害的观测数据;从时间尺度看,在遥感平台上能够对地球进行同步观测,可获得地球表层及其瞬间变化的灾害信息。
检查电器商铺、修理店**余家,集贸市场**处。四是强化网络保护,营造安靖清朗空间。深入清理网络违法违规信息内容,网信部门对本地**家网站平台发布的信息内容进行筛查。联合公安局网安大队共开展网站网络安全检查**次,暂未发现含有侵害未成年人信息的网络产品和服务违规运营网站。深入开展“清朗·‘饭圈’乱象整治”“护苗”等专项行动,在**新闻网设立涉未成年人专用举报渠道。线上持续开展“净网”网络环境巡查,发现问题提交网信、公安部门实施封堵,依法依规清理有害信息**余条。五是强化政府保护,服务关爱重点人员。打造专兼结合的未保工作队伍,实现乡镇、村(社区)未保工作人员全覆盖。完善未保从业人才培训、奖惩、评价工作机制,每年对乡镇儿童督导员开展**次培训。全县**余名留守和困境儿童纳入监护范围,**余名孤困儿童基本生活得到全面保障。