2学情分析 1、这一课是一年级的“造型·表现”学习领域,一年级孩子自制力较差,注意力集中时间不长,缺乏一定的造型能力,但好奇心很强,表现欲望非常强烈,非常希望得到老师和同学们的认可,从他们的兴趣入手就能达到事半功倍的效果;2、教学方式应该是直观的;3、让学生通过欣赏与想象进行创作,激发他们对大自然的兴趣,感受大自然的美。
教学过程:一、组织教学,导入学习1.观察导入,激发兴趣(教具出示)2.教师和学生一起做猜节日的游戏,激发学生的兴趣。 每年的9月10日都是教师们最开心的日子,也是学生们表达对老师尊敬的日子,中国自古以来便有尊师重教的传统,《教师法》 第四条规定全社会应当尊重教师。
教学目标 知识目标:通过欣赏大自然的图片,感知大自然不同特点的美。 技能目标:能用自己喜欢的方式表达对不同自然美的感受。 情感态度与价值观:培养学生热爱大自然的情感,及爱护大自然的情感。 教学重点让学生感受大自然不同的美,了解大自然的丰富,并能用简单的语言表达自己的感受。 教学难点学习用审美的眼光去观察大自然。 主要教法启发引导法、自学尝试法 学习指导体验探究法辅助指导法 教学资源教师:教材、课件。 学生:教材、自然风光片 教学过程: 教学活动教学意图 教师学生
2学情分析本课内容选用了苗族阿姐的背篓,黎族阿爸的鱼笼,竹摇篮、簸箕等借助家庭中常见的竹器作为学习内容,目的是要求学生用线描的方法对竹器的外形及竹编的篾纹进行描绘,锻炼学生对事物的观察能力和表现能力。在此之前学生已经学过了如何用线描的方式描绘生活中的小物件,这为过渡到本课内容的学习起到了铺垫作用,同时为后面的素描教学内容打下造型基础。
设计意图:最后是当堂训练,目标检测,这一环节要尽量让学生独立完成,使训练高效,在学生训练时教师要巡回辅导,重点关注课堂表现不太突出的学生,由于本课时内容多,训练贯穿课堂始终,加上不能使用计算器,因此课堂节奏难于加快,所以当堂训练的时间预估不足。四、教学思考1.教材是素材,本节课对教材进行了全新的处理和大胆的取舍,力求创设符合学生实际的问题情境,让学生经历从实际问题中抽象出锐角三角函数模型的过程,发展了学生的应用意识及分析问题解决问题的能力,培养了学生的数学建模能力及转化的思维方法。2.充分相信学生并为学生提供展示自己的机会,课堂上要把激发学生学习热情和获得学习能力放在教学首位,通过运用各种启发、激励的语言,以及小组交流、演板等形式,帮助学生形成积极主动的求知态度。
[互动2]师:请大家从上面的解题经历中,总结一下如果已知函数的图象,怎样求函数的表达式?小组讨论之后再发表意见。生:第一步根据图象,确定这个函数是正比例函数或是一次函数;第二步设函数表达式;第三步:根据表达式列等式,若是正比例函数,只要找图象上一个点的坐标就可以了;若是一次函数,则需要找到图象上两个点的坐标,然后把点的坐标分别代入所设的解析式中,组成关于R、b的一个或两个方程。第四步:求出R、b的值第五步:把R、b的值代回到表达式中就可以了。师:分析得太好了。那么,大家说一说,确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?要说明理由。生:确定正比例函数需要一个条件,而确定一次函数需要两个条件。原因是正比例函数的表达式:y=Rx(R≠0)中,只有一个系数R,而一次函数的表达式y=Rx+b(R≠0)中,有两个系数(待定)R和b。
(四)提高应用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,请找出图中的相似三角形,并说明理由。设计意图:训练学生灵活运用知识的能力(五)小结反思1.、相似三角形的判定方法一:如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. 2、在找对应角相等时要十分重视隐含条件,如公共角、对顶角、直角等. 3、掌握由平行线构造的两类相似图形:一类是A字型,另一类是X型. (回顾定理,强调两个基本图形,培养学生养成认真观察,注意寻找图形中的隐含信息的意识) 4、 常用的找对应角的方法:①已知角相等;②已知角度计算得出相等的对应角;③公共角;④对顶角;⑤同角的余(补)角相等.
(三)如图, 中, ,AB=6厘米,BC=8厘米,点 从点 开始,在 边上以1厘米/秒的速度向 移动,点 从点 开始,在 边上以2厘米/秒的速度向点 移动.如果点 , 分别从点 , 同时出发,经几秒钟,使 的面积等于 ?拓展:如果把BC边的长度改为7cm,对本题的结果有何影响?(四)本课小结列方程解应用题的一般步骤:1、 审题:分析相关的量2、 设元:把相关的量符号化,设定一个量为X,并用含X的代数式表示相关的量3、 列方程:把量的关系等式化4、 解方程5、 检验并作答(五)布置作业1、请欣赏一道借用苏轼诗词《念奴娇·赤壁怀古》的头两句改编而成的方程应用题, 解读诗词(通过列方程,算出周瑜去世时的年龄)大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?本题强调对古文化诗词的阅读理解,贯通数学的实际应用。有两种解题思路:枚举法和方程法。
设计说明:设计这组测验为了反馈学生学习情况,第1题较简单,也是为了让提高学生学习士气,体会到成功的快乐;第2题稍微有点挑战性,利用直角三角形外心位置规律解答,也满足不同层次学生的不同需求.教师可们采用抢答方式调动学生积极性,学生抢答,师生共同反馈答题情况,教师最后出示正确答案并做总结性评价.环节十:布置作业课件演示: 拓展延伸1.思考:经过4个(或4个以上的)点是不是一定能作圆?2.作业:A层 课本118页习题A组1,2,3; B层 习题B组.设计说明:设计第1题的原因保证了知识的完整性,学生在探究完三个点作圆以后,肯定有一个思维延续,不在同一直线上三个点确定一个圆,四个点又会怎样?四个点又分共线和不共线两种情况,不共线的四点作圆问题又能用三点确定一个圆去解释,本题既应用了新学知识,又给学生提供了更广泛地思考空间.第2题,主要是让学生进一步巩固新学知识,规范解题步骤. 在作业设计时,既面向全体学生,又尊重学生的个体差异,以掌握知识形成能力为主要目的.
(设计意图:因为圆中有关的点、线、角及其他图形位置关系的复杂,学生往往因对已知条件的分析不够全面,忽视某个条件,某种特殊情况,导致漏解。采用小组讨论交流的方式进行要及时进行小组评价。)(3) 议一议( 如图,OA、OB、OC都是圆O的半径∠AOB=2∠BOC, 求证:∠ACB=2∠BAC。)(设计意图:通过练习,使学生能灵活运用圆周角定理进行几何题的证明,规范步骤,提高利用定理解决问题的能力。)(三)说小结首先,通过学生小组交流,谈一谈你有什么收获。(提示学生从三方面入手:1、学到了知识;2、掌握了哪些数学方法;3、体会到了哪些数学思想。)然后,教师引导小组间评价。使学生对本节内容有一个更系统、深刻的认识,实现从感性认识到理性认识的飞跃。(四)、板书设计为了集中浓缩和概括本课的教学内容,使教学重点醒目、突出、合理有序,以便学生对本课知识点有了完整清晰的印象。我只选择了本节课的两个知识点作为板书。
2、课标要求对于本节课内容课标要求:探索并掌握两个三角形全等的条件;注重所学内容与现实生活的联系,注重经历观察、操作、推理、想像等探索过程。初步建立空间观念,发展几何直觉;在探索并掌握两个三角形全等的条件,与他人合作交流的过程中,发展合情推理,进一步学习有条理的思考与表达。二、学生分析 1、七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要不断创造条件和机会,让学生发表见解,充分发挥学生学习的主动性,体现学生的主体地位。
一、关于教学目标的确定:第五章的主要内容是一元一次不等式(组)的解法及其在简单实际问题中的探索与应用。探索不等式的基本性质是在为本章的重点一元一次不等式的解法作准备。不等式的基本性质3更是本章的难点。可是说不等式的基本性质这个概念既是不等式这一章的基础概念又是学生学习的难点。因此我选择此节课说课。教参指导我们:教学要注重和学生已有的学习经验和生活实际相联系,注重让学生经历和体会“从实际问题中抽象出数学模型,并回到实际问题中解释和检验”的过程。注重“概念的实际背景与形成过程”的教学。使学生在熟悉的实际问题中,在已有的学习经验的基础上,经历“尝试—猜想—验证”的探索过程,体会“转化”的思想方法,体会数学的价值,激发学习兴趣。在教学中要渗透函数思想。运用数学中归纳、类比的方法,理解方程与不等式的异同点。
[设计意图]节环节的设置是为了使学生在掌握不等式性质的基础之上,加以拓展的作业,使课程的内容不但能满足全体学生需求,更能满足学有余力的学生得到更大收获,从数轴上获取信息来完成填空,从而体现数形结合的思想,学生通过参与活动,体会挑战成功的喜悦,并且他们的求胜心理得到了满足,沉醉在知识给他们带来的快感中完成本节课的学习,(六)课堂小结最后,凯旋归来话收获:通过本节课的学习,你收获到了什么?学生们都积极的举手回答,说出了各种各样的收获,比如:1、学会了不等式的三条基本性质2、学会了用字母来表示不等式的性质3、学生不等式与等式的区别等等;学生在回答的时候,老师加以评价和表扬并展示主要内容;这里教师要再次强调,特别注意性质3,两边同乘(或除以)一个负数时,不等号的方向要改变,数学思想的方法是数学的灵魂,这节课我们体验了三种数学思想,一是类比的思想,二是数形结合的思想,三是分类讨论的思想,
本环节运用了一个阶梯式的问答方法,帮助突破本节课的难点。同时,从具体的实际问题入手,由特殊问题到一般规律的揭示,不仅解决了难点问题,而且从另外一个角度讲也渗透给了学生的数形结合思想,还有利于学生主动探索意识的培养。4、自主评价本环节主要是应用本节课所学的知识以及所积累形成的学习经验和体验解决问题的过程,即课堂巩固训练。在练习题的选择上,由简单到复杂。先是结合图象获取信息进行简单的填空和选择,此题属于A组题型,检验学生的掌握情况;然后进行了一道B组题,关于“一次函数与一元一次方程的关系”知识点的灵活运用,进一步通过练习体会它们的关系。5、自主发展:最后一道则是特殊的区别于之前所学习的分段函数练习,发散学生思维问题的训练。让学生体会分段函数的特点,并掌握求分段函数解析式的方法。
5、板书设计 §1.4船有触礁的危险吗 一、船布触礁的危险吗 1.根据题意,画出示意图.将实际问题转化为数学问题. 2.用三角函数和方程的思想解决关于直角三角形的问题. 3.解释最后的结果. 二、测量塔高 三、改造楼梯 五布置课后作业: 习题1.6第12 3题 六、设计说明 具有现实意义和挑战性的内容的设计,激发学生的学习兴趣,使学生乐学。 开放性实践问题和分层作业的设置,满足每个学生的学习需求,使学生愿学。 多样的学习方式和适时引导,提高学生的学习质量,使学生能学。 背景多样,层层递进,适时反思,发展学生的数学思维能力,使学生活学。 当学生乐学、愿学、能学、活学时,就将学会学习,将学习当成乐趣,作为生命中不可或缺的部分,也为学生终生学习奠定良好的基础。
说教材本文是部编版八年级语文下册第四单元的一篇课文,也是一篇幽默风趣的演讲稿。文章介绍了王选先生一生的重要抉择和贡献,并将自己的一生的抉择与祖国的发展密切结合起来。说学情学生对王选先生有一定的了解,在介绍他一生重要抉择时学生更容易理解王选先生爱岗敬业,勤奋工作的精神并深受鼓舞。教学目标1、识记王选极其重大贡献2、识记课文主要词语3、通读全文,了解王选一生中经历的几次重大选择。4、学习王选先生专注于科研、无私奉献的精神教学重点王选一生中经历的几次重大选择教学难点从这几次选择中分析王选先生的精神教学方法研读法、讨论法
(一)教材分析本节课是在学生已经学过除法和分数的意义以及分数与除法的关系的基础上进行教学的。由于学生在理解比的意义上比较困难,教材并没有采取直接给出“比”的概念的做法,而是密切联系学生已有的生活经验和学习经验,提供了多种情境,引发学生的讨论和思考,让学生体会引入比的必要性,感受比在生活中的广泛存在,也为“比的应用”“比例”等后续学习做好铺垫。(二)教学目标在认真分析教材的基础上,结合学生实际,我从知识、能力、情感等方面拟定了本节课的教学目标:知识目标:经历从具体情境中抽象出比的过程,理解比的意义,能正确读写比,会求比值。能力目标:培养学生自主学习、独立思考,能利用比的知识解决一些生活中的数学问题。情感目标:引导学生广泛联系生活实际,充分感受数学知识的美与乐趣,激发学生的求知欲望。
经过探究发现只有10与11出现的概率最大且相等(在探究的过程中提醒学生按求等可能性事件的概率步骤来做,在判断是否等可能和求某个事件的基本数上多启发和引导,帮助学生顺利突破难点。)及时表扬答对的学生,因为这个问题整整过了三个世纪,才被意大利著名的天文学家伽利略解决。后来法国数学家拉普拉斯在他的著作《分析概率论》中,把伽利略的这个解答作为概率的一个基本原理来引用。(适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的)8、课堂小结:通过这节课的学习,同学们回想一下有什么收获?1、基本事件和等可能性事件的定义。2、等可能性事件的特征:(1)、一次试验中有可能出现的结果是有限的。(2)、每一结果出现的可能性相等。3、求等可能性事件概率的步骤:(1)审清题意,判断本试验是否为等可能性事件。
(3)例题1的设计,一方面是帮助学生从生实际问题背景中逐步建立古典概型的解题模式;另一方面也可进一步理解古典概型的概念与特征,重点突破“等可能性”这个理解的难点。 采用学生分组讨论的方式完。在整个活动中学生作为活动设计者、参与者.主持者;老师起到组织和指导的作用。为了让学生进一步认识和理解随机思想,认识和理解概率的含义—概率是一种度量,是对随机事件发生可能性大小的一种度量.让学生观察图表,得出对称的规律。预计学生在构建等可能性事件模型时要花一些时间。(4)例题1的拓展设计:看学生能否能在例1的基础上利用类比的思想来建构数学模型,并得出求事件 A包含的基本事件数常用的方法有树状图法,枚举法,图表法,排列组合法等方法。适当的渗透一些数学史,学生对学习的兴趣更浓厚,可以激发学生课后去进一步的探究前辈们是如何从不考虑顺序到想到考虑顺序的
(1)上午9时的温度是多少?12时呢?(2)这一天的最高温度是多少?是在几时达到的?最低温度呢?(3)这一天的温差是多少?从最高温度到最低温度经过了多长时间?(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.2、议一议:骆驼被称为“沙漠之舟”,你知道关于骆驼的一些趣事吗?例:它的体温随时间的变化而发生较大的变化:白天,随沙漠温度的骤升,骆驼的体温也升高,当体温达到40℃时,骆驼开始出汗,体温也开始下降.夜间,沙漠的温度急剧降低,骆驼的体温也继续降低,大约在凌晨4时,骆驼的体温达到最低点.3、如下图,是骆驼的体温随时间变化而变化的的关系图,据图回答下列问题: