②关于哲学的第二个问题是——思维和存在有没有同一性解释同一性——就是说意识(思维)能否正确认识物质(存在)的问题。(让学生表达他们自己的意见)总结得出三种看法——认为意识(思维)可以正确认识物质(存在)的,属于可知论者;凡是认为意识(思维)不能正确认识物质(存在),属于不可知论者。当然也有些同学是两者观点都有,这种同学我们把他称为不彻底的不可知论者。2、为什么思维和存在的关系问题是哲学的基本问题(1)它是人们在生活和实践活动中首先遇到和无法回避的基本问题(举例说明问题,吃饭的时候吃什么菜,学习计划与学习的实际等等)结合教材P10探究进行讲解举例:11月31日请全班同学吃雪糕,吃完后再去肯德基大吃一顿,之后再到卡拉OK唱通宵——不切实际,因为11月并没有31日。(2)它是一切哲学都不能回避、必须回答的问题(不同的回答,直接决定着哲学的不同发展方向。)
四、课堂小结今天我们一起研究了什么问题?板书课题:求一个数比另一个数多几的应用题解答这样的问题,应该怎样进行分析?在老师的提问下,学生回忆分析思路。最后,小结上课时男女学生小旗的情况,得出数目后问:你能根据今天学习的内容提出问题并列式计算吗?教学反思:求一个数比另一个数多几的应用题,本节课属于计算教学。传统的计算教学往往只注重算理、单一的算法及技能训练,比较枯燥。依据新的数学课程标准,在本节课的教学设计上,创设生动具体的教学情境,使学生在愉悦的情景中学习数学知识。鼓励学生独立思考、自主探索和合作交流。尊重学生的个体差异,满足多样化的学习需求。 在课堂过程中,还有小部分学生不能充分地展开自己的思维,得到有效的学习效果,让所有的学生基本都学会如何去展现自己的有效的学习方式,这是我的教学目标。
我使用的是聆听法和提问法。请同学们带着这样的问题欣赏《苗岭的早晨》。问题是“听这首乐曲时你眼前浮现的是什么样的画面?这首乐曲表达了怎样的思想感情?”听完后作答。我这样设计的目的是实现我的第二点教学目标。这个环节完后我接着对苗族的重要节日、服饰、音乐、乐器和一些风俗习惯等进行阐述。运用讲授法和讨论法。这样设计的目的是实现我的第一点教学目标。3、 教唱部分:(18分钟)不同的少数民族,他会具有自己独特的民族文化和音乐风格。让我们一起来学习一首很有魅力的彝族歌曲《赶圩归来啊哩哩》。首先我们完整地听一遍,感受一下这首曲子的情绪和独特的地方。接着就是教唱和演唱、分组演唱的部分。这样设计的目的是实现我的第三点教学目标。4、 小结:“今天我们叩开了西南风情的大门,发现里面绚丽多彩如诗如画。希望同学们通过网络和书籍等手段继续参观和探索里面的奥妙。”这样设计的目的是让同学们继续学习。最后结束本课。
提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:根据AB∥CD,∠ACD=120°,得出∠CAB=60°.再根据尺规作图得出AM是∠CAB的平分线,即可得出∠MAB的度数.解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺规作图知AM是∠CAB的平分线,∴∠MAB=12∠CAB=30°.方法总结:通过本题要掌握角平分线的作图步骤,根据作图明确AM是∠BAC的角平分线是解题的关键.三、板书设计1.角平分线的性质:角平分线上的点到这个角的两边的距离相等.2.角平分线的作法本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练
方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.三、板书设计1.等腰三角形的性质:等腰三角形是轴对称图形;等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴;等腰三角形的两个底角相等.2.运用等腰三角性质解题的一般思想方法:方程思想、整体思想和转化思想.本节课由于采用了直观操作以及讨论交流等教学方法,从而有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE,根据全等三角形的性质即可解答;(2)根据线段垂直平分线的性质判断出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法总结:此题主要考查线段的垂直平分线的性质等几何知识.线段垂直平分线上的点到线段两个端点的距离相等,利用它可以证明线段相等.探究点二:线段垂直平分线的作图如图,某地由于居民增多,要在公路l边增加一个公共汽车站,A,B是路边两个新建小区,这个公共汽车站C建在什么位置,能使两个小区到车站的路程一样长(要求:尺规作图,保留作图痕迹,不写画法)?
(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.(4)∵∠EAF=90°(旋转角相等)且AF=AE,∴△EAF是等腰直角三角形.【类型二】 旋转的性质的运用如图,点E是正方形ABCD内一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3则∠BE′C=________度.解析:连接EE′,由旋转性质知BE=BE′,∠EBE′=90°,∴△BEE′为等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板书设计1.旋转的概念将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.
亿以内数的认识,是在学生认识和掌握万以内数的基础上学习的。生活中大数广泛存在,对大数的认识是万以内数的认识的拓展,也是学生必须掌握的最基本的数学基础之一。本册教材先教学亿以内数的读法和写法,再教学亿以上数的读法和写法,并对数的理论进行整理,在两部分认识数教学中间安排十进制计数法,知道数位,数级,对亿以内数的认识的内容进行归纳整理,也对亿以上数的认识起承上启下作用。加强了数学与现实生活的联系,同时对学生进行综合知识的渗透,从万以内数的认识到亿以内数的认识是学生数概念的又一次扩充。教材提供了较丰富的素材,让学生感受大数,不仅为学生认识大数提供丰富的内容,也为对学生进行国情教育提供了好素材。突出数概念教学,从数学的高度把握十进制原理,培养数感。教学内容的呈现给了学生自主探索和自主交流的空间,也为教师组织教学提供了思路,如:读、写数的法则教材上不给出现成的结论,而是让学生通探究自主过讨论得到。
一、说教材《下课啦》是北师大一年级上册第二单元的内容。本节课是学生在学习比大小、比多少基础上进行学习的。比高矮、长短对于学生而言并不陌生,这节课的内容难在学生初步掌握比高矮、长短的方法。因此,我把本节课的目标预设为:1、在比一比的活动中,通过直观地比较物体的高矮、长短、初步感知几个物体之间的高矮、长短。2、知道在比较高矮、长短时需要在同一起点进行。3、通过与他人合作交流,掌握比较的方法,获得成功的体验,增强自信心。教学重点通过观察、比较、让学生获得高矮、长短等比较活动的方法。教学难点让学生用自己的语言组织比较的方法。二、说学情本节内容的教学主要是比较物体的高矮、长短,学生对这一方面的知识已经有一定的生活经验,但层次参差不齐,需要教师知识性的梳理。因此在教学中应结合学生年龄特点、生活背景等具体情况的基础上进行教学。
二、说教法与学法学生的经验和活动是他们学习数学的基础。本节课的教学本人根据数学新课标的基本理念,精心设计学生的数学活动,充分利用了多媒体教学手段,调动学生多种感官参与学习。让学生在实际中运用所学知识,体现了数学来源于生活,生活离不开数学。整节课以游戏、活动为主线,把教学内容清晰有趣地串了起来,设计了新颖的情景教学和动画故事,尽可能的激发学生的求知欲望。教学过程紧扣教材,层层递进,环环相扣,教师能根据学生的实际适时的引导,使整节课能顺利完成教学任务。有效的学习就是激励学生动手实践、自主探索与合作交流。本课教学中,本人就注意实践操作与游戏活动有机地结合,让学生在玩、交流中思考,在思考中探索,获取新知。三、说教学过程本节课的教学我主要设计了六个环节:提问导入、猜数游戏、实际应用、回顾总结、课堂作业。
二、说教学目标教学目标是一堂课的中心任务,所有教学环节都是为此服务的,课程标准指出:数学教学不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律??使学生获得对数学理解的同时,在思维能力、情感态度与价值观等方面都得到进步和发展。根据这一要求和本节教学内容,并结合学生的实际情况,本节课我确定如下学习目标:1、知识与技能在熟悉的生活情景中,进一步体会负数的意义;会用负数表示一些日常生活中的问题,知道正负可以相互抵消。2、过程与方法本节课以小组合作学习为主,让学生利用导学案自学,再对学、群学,最后在班里进行展示。整节课都是学生自主学习,积极探索的一个过程。3、情感、态度与价值观经历独学、交流、合作、展示等一系列活动,通过生生、师生互动获得良好的情感体验,同时让学生感受到了数学在生活中的应用。依据这样的教学目标,再结合学生的年龄特点,我运用了浅显易懂的儿童语言制定了导学案上的学习目标。
【设计意图:让学生在操作、探索的基础上,组内交流想法,再在班内交流汇报,让学生的语言得到相互交流、碰撞,从而不断激发学生的思维火花。】师:你能把这些摆法用算式写出来吗?(学生独立写出算式并汇报)依学生汇报板书:1×12=122×6=1212×1=126×2=123×4=124×3=12师:请同学们观察一下,哪两道算式的因数一样?学生观察算式,找出因数一样的算式。师:那么,这6个算式最少能用几种算式表示出来?引导学生说出能用3种方法表示,这三种方法是:1×12=122×6=123×4=12,并指明算式一样时选择其中一种说出来。板书:12=1×12=2×6=3×4师:同学们观察一下,12的因数有哪几个?(学生说出12的因数有:1、12、2、6、3、4。)师:拼长方形与找因数有什么关系呢?(指名学生说一说)师:根据刚才的操作交流,请同学们说一说怎样找一个数的因数呢?(学生思考片刻后汇报,可以组内交流。)引导学生说出:用乘法思路想,看哪两个数相乘得12,然后一对一对找出来。
一、说教材本课选自北师大小学数学实验教材一年级上册《上下》,它属于“空间与图形”中的内容,为以后学习“方向与位置”及“方向与路线”做好铺垫。在这一课时里我充分利用学生已有的生活经验,把这一知识的学习融入到找家的活动,让学生在活动中认识上下的位置关系。依据新课标精神和学生实际,结合教材我确定了如下教学目标(1)知识与技能目标:体验上下的位置关系,能用准确的数学语言表达出来。(2)能力目标:培养学生观察、分析、概括的能力及想象力,发展学生的空间观念。(3)、情感目标:在有趣的课堂活动中体验数学与生活的紧密联系及数学学习的快乐,并养成热情好客尊敬长辈的行为习惯。4、教学重、难点:重点是学生会用自己的的语言描述上下位置关系,难点是体会上下位置关系的相对性。依据一年级学生的年龄特点,为了激发学生的学习兴趣,培养学生自主学习的能力,我是这样实施教学的。
本课的教学重点是:能正确计算7的加减法。教学难点是:运用所学知识解决生活中简单的加减法问题。根据学生的实际情况《背土豆》共安排两课时,本节课为第一课时。二、说教法与学法学生的经验和活动是他们学习数学的基础。抓住学生的年龄特点和心理特点,从学生感兴趣的小故事导入新课,在观察情景图的过程中,既培养学生的观察能力和语言表达能力,又激发了学生学习数学的兴趣。同时充分利用了学具和多媒体教学手段,调动学生多种感官参与学习。整节课以故事为主线,把教学内容串了起来,尽可能地激发学生的求知欲望。教学过程紧扣教材,根据学生的实际适时引导。有效的学习就是激励学生动手实践、自主探索与合作交流。本课教学中,我尽可能地引导学生自主提问,自己解决问题,让学生在探索、操作、交流获取新知。
3、情感、态度、价值观目标知识与技能:通过比较的活动,让学生感受数学与生活的联系,培养学生仔细观察、认真思考的良好习惯。过程与方法:使学生经历比较实物的多少、大小、体验一些具体的比较方法。情感态度价值观:让学生经历简单的推理活动,培养学生初步的推理能力。教学重点:体验比较的过程,获得比较的不同方法。教学难点:理解感知最多与最少,最大与最小。教学准备:多媒体课件、各种杯子、两瓶饮料二、说教法:1、讲解法,多媒体课件辅助教学:创设生动具体的教学情境,使学生在愉悦的情景中学习数学知识。充分运用教材提供的教学资源,利用电子白板展台为学生展现一幅过生日画面,引发学生的兴趣,调动学生的情感投入,激活学生原有知识和经验,以此为基础展开想象和思考。
一、说教材:“跷跷板”一课是一年级上册第二单元的内容,是在学生学习了比较多少和高矮、长短的基础上进行的体验活动。内容选取学生身边的、常见的、较感兴趣的事物,符合学生的年龄特点与生活经验。本节课的教学让学生通过实践活动,逐步加深对轻重的体验与理解,初步体会借助工具确定轻重的必要性。根据一年级学生的年龄特点和教材的设计意图,教学中应注意创设有趣的情境,使学生产生学习比较轻重的兴趣,让学生在具体的操作活动中独立思考、合作交流,发现比较的方法,使他们获得良好的情感体验,树立学好数学的信心,培养创新意识。二、说教学目标:1、通过比较的活动,让学生感受数学与生活的联系,培养学生仔细观察、认真思考的良好习惯。2、经历比较活动,增强轻重的生活体验。3、通过说一说、掂一掂、称一称的活动,使学生逐步加深对轻重的体验与理解,学会一些比较的方法,体会轻重的相对性。4、通过简单的推理活动,培养学生初步的推理能力。
一、学生分析刚进校的一年级小朋友绝大多数接受了良好的学前教育,10以内数甚至更大的数对小朋友来说并不陌生,但他们对数的实际意义的理解还不是很清晰。除此之外,部分学生在学前还不同程度地学会了1~10各数的书写方法,具备了较好的知识经验,为新课的教学提供了良好的基础。二、教材分析“文具”一课是第一单元“生活中的数”的第五课时。如何从生活中抽象出数的概念,本节课起着重要的作用。教材借助与学生学习息息相关的文具用品这一情境,通过找朋友的活动,使学生能正确数出数量是6~10的物体的个数,初步体会到数都是从实际中抽象、概括出来的,体会到数与实物的对应思想。在此基础上,教材再通过数一数自己铅笔盒里的文具、写一写、说一说、画一画、填一填等数学活动,使学生掌握6~10各数的书写方法,逐步让学生体验实物、符号、数字之间的联系,掌握数数的方法,建立数感。