提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

单位工资保密协议

  • 小学数学苏教版六年级下册《第六单元第三课反比例关系、反比例量》教学设计说课稿

    提问:1.怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系? 2.判断下面两种量是否成正比例?为什么? (1)时间一定,行驶的路程和速度 (2)除数一定,被除数和商 3.单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例? 4.导入新课: 如果总价一定,单价和数量的变化有什么规律?这两种量存在什么关系?今天,我们就来研究这种变化规律。

  • 小学数学人教版六年级下册《第一单元第一课负数例1例2》教案说课稿

    (一)观图激趣、设疑导入 出示课件的第二张幻灯片。师:请说出与老师相反的词语或句子。向上看。向东走50米。小维在知识竞赛中赢了20分。小明在银行存入300元钱。零上10℃。生:……。师:这就是我们今天要学习的负数。板书:负数(二)探究新知1、出示课件的第三张幻灯片。师:请大家仔细观察上图,你发现什么问题?学生以小组为单位交流。学生以小组为单位汇报交流结果。生:0℃表示什么意思呢?生:3℃和-3℃表示的意思一样吗?师:小组内交流解决上述问题。学生以小组为单位探究交流。学生以小组为单位汇报探究交流结果。老师对学生汇报给予适当的评价。老师课件出示答案。师:0℃表示淡水结冰的温度,比0℃低的温度叫零下温度,通常在数字前加“-”(负号),如-3 ℃表示零下3摄氏度,读作负三摄氏度;比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上三摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

  • 人教版新课标小学数学四年级下册运算定律与简便计算单元复习说课稿

    一 说教材运算定律和简便计算的单元复习是人教版第八册第三单元内容,属于“数与代数”领域。本节内容是在学生学习了运算定律(加法交换律、加法结合律、乘法交换律、乘法结合律和乘法分配律)以及基本的简便计算方法(连减、连除)基础上进行的整理复习课。二、说教学目标及重难点1、通过复习、梳理,学生能熟练掌握加法、乘法等运算定律,能运用运算定律进行简便计算。2、培养学生根据实际情况,选择算法的能力,能灵活地解决现实生活中的简单实际问题。教学重点:理解并熟练掌握运算定律,正确进行简便计算。教学难点:根据实际,灵活计算。三、说教法学法根据教学目标及重难点,采用小组合作、自主探究、动手操作的学习方式。四、说教学过程

  • 双曲线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图

  • 抛物线的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 抛物线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,

  • 双曲线的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为

  • 椭圆的简单几何性质(1)教学设计人教A版高中数学选择性必修第一册

    1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.

  • 椭圆的简单几何性质(2)教学设计人教A版高中数学选择性必修第一册

    二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.

  • 北师大初中数学九年级上册用配方法求解简单的一元二次方程1教案

    探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.

  • 北师大初中数学九年级上册用配方法求解简单的一元二次方程2教案

    (1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:

  • 北师大初中数学九年级上册用配方法求解简单的一元二次方程2教案

    二、合作交流活动一:(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:

  • 202X年退役军人服务保障体系建设情况调研报告

    (一)机构编制人员方面  区退役军人服务中心及各街道(镇)、社区(村)退役军人服务站挂牌成立,在全区形成了覆盖区、街道(镇)、社区(村)三级退役军人服务体系。目前,区委编委已批复区退役军人服务中心事业编制编制xx名;街道(镇)、社会人员编制尚未明确。  (二)工作经费方面  区财政现已向区退役军人事务局及服务中心拨付各项工作经费xxx万元。其中,先期拨付开办经费xx万元用于购置办公设备,后追加工作经费xxx万元,信息采集工作经费x万元,光荣牌制作经费x万元。

  • 小学科学教科版四年级上册《保护我们的听力》教案

    过程与方法:通过阅读保护听力的资料,了解我们的听力经常受到哪些伤害,知道保护听力的做法。情感、态度、价值观:认识到保护听力的重要性,养成良好的用耳习惯和在公共场所保持肃静的习惯。教学重点认识到保护听力的重要性教学难点知道各种控制噪音的方法教学准备发音罐、报纸、毛巾、棉花等

  • (6月5日世界环境日)小学国旗下讲话:保护环境,从净化校园做起

    自然环境是我们人类生存的基础,保护和改善自然环境,是人类维护自身生存和发展的前提。作为二十一世纪的小主人,我们应该怎样保护环境呢?这让我想起一个小故事,我国一位著名的学者在欧洲一个海滨公园草坪边的椅子上休息时,看见旁边长椅上一个四、五岁的小女孩,走到十多米以外的一个垃圾桶旁,把一张巧克力的包装纸扔了进去,又高高兴兴地走回来。那位学者问小女孩:“你为什么走那么远去扔一张纸呢?”女孩认真地说:“这草地那么美,要是我把废纸扔在上面,它就不美了。”听了这个故事,相信同学们都知道了,保护环境应该从身边的小事做起。

  • “世界艾滋病日”国旗下的讲话:增强自我保护意识

    作为一个青少年,应该认识到:艾滋病的传播没有国界,我国是世界上的人口大国,是国际社会的一员,有责任和世界各国携手共同努力控制艾滋病的蔓延;学习预防艾滋病的知识,不仅使青少年能及时了解与掌握预防艾滋病的知识、增强自我保护意识和抵御艾滋病侵袭的能力;更重要的是培养预防艾滋病的社会责任感、使命感。青少年是社会和国家的未来,是全社会预防艾滋病的主力军。青少年参与预防艾滋病的活动意义深远,不仅是为了青少年自己的生存与健康,而且是为了全社会、全人类的发展。青少年有责任成为抵御艾滋病在二十一世纪猖獗流行的最有生气的社会力量。

  • 关于六月份世界环境日小学国旗下讲话稿6月5日关于保护环境

    各位老师,各位同学:早上好!6月5日是世界环境日,所以,今天我们为大家带来的是一首诗歌《给未来一片绿色》轻轻地打开地球画册山山水水都在问我;二十一世纪的孩子们,你想给未来的地球留下什么?是留下一棵树,还是留下一朵花?是留下一个生命的春天,还是留下一片永恒的绿洲?啊,我们铿锵做答:给未来留下一个更美的地球,和一首绿色、和平的赞歌!深情地挥动七彩画笔,自然天地云涌浪起;二十一世纪的孩子们,

  • 防灾减灾日国旗下讲话稿:增强防灾减灾意识,学会自我保护

    林宇轩尊敬的老师、亲爱的同学们:大家好!今天我国旗下讲话的主题是“增强防灾减灾意识,学会自我保护”。今天是5月12日,也是我国的第8个防灾减灾日。今年的主题是:城镇化与减灾。在XX年3月2日,经国务院批准,把每年的5月12日定为全国的防灾减灾日。这既体现了国家对防灾减灾工作的高度重视,也是构建和谐社会的重要举措。通过设立“防灾减灾日”,定期举办全国性的防灾减灾宣传教育活动,有利于进一步唤起社会各界对防灾减灾工作的高度关注,增强全社会防灾减灾意识,普及推广全民防灾减灾知识和避灾自救技能,提高各级综合减灾能力,最大限度地减轻自然灾害的损失。虽然灾难看似离我们很遥远,但是如果没有树立起正确的安全防范意识,即使在我们的校园中,也会容易出现安全事故。举一个简单的例子,篮球可能是男同学们最喜爱的课余活动之一,然而就是在这一片不大的场地中,倘若轻视了自我保护,也会给自己带来惨痛的教训。很可能就在一次碰撞中,因为没有做好自我保护,就因此受到伤害,出现骨折等现象。因此,上体育课、体锻课前要做好准备活动,运动时注意不要剧烈碰撞,以免撞伤或摔伤;活动时,要在体育老师的正确指导下,使用体育器材或参加运动,课余时间活动要注意安全。

  • 第九周国旗下讲话稿:学会自我保护,安全与我同行

    尊敬的老师们,同学们:Dearteachersandclassmats,大家早上好!我是二(1)班的张xx。今天我演讲的主题是《学会自我保护,安全与我同行》。Goodmorning!Iam______fromclass1Grade2.mytopicis“Tolearnhowtoprotectmyself,tobesafeeverytime”.校园是我们共同学习的地方,这里有老师,有同学,在这个大家庭里,我们快乐地学习,健康地成长。但是,在这个大家庭里,也很容易发生意外。campusisaplacewestudytogether.Thereareteachersandstudentshere,westudyhappilyandgrowhealthily.However,wemeetaccidentsometimes,too.午觉过后,有同学奔跑着回到教室;课间十分,有同学在教室走廊里追逐打闹……像这样不看路,快速奔跑都是非常危险的,严重的还会骨折。我曾经看到一位高年级的大哥哥,下课铃一响,他就飞快地从教室冲出来,快到直饮水机旁边时,因为跑得太快,他没看到脚下有东西,摔倒在地上,送到医院一看,已经骨折了,好多天都没来上学,不光耽误了功课,还受了许多罪。

  • 第九周国旗下讲话稿:增强安全意识,学会自我保护

    同学们,老师们:大家早上好!今天我国旗下讲话的题目是《增强安全意识,学会自我保护》。同学们,安全无小事,事事须小心。增强安全意识,学会自我保护,是杜绝安全事故发生的最好法宝。然而,我们许多同学思想上、心理上和行为上都忽视了安全工作的重要性。据中国青少年研究中心的全国性大型调查发现,安全事故已经成为14岁以下少年儿童的第一死因,并有逐年增加的趋势;全国每年约有1.6万名中小学生非正常死亡,平均每天有40多人,就是说几乎每天有一个班的学生从我们这个世界“消失”!一个个触目惊心、血泪交织的悲剧叫人扼腕叹息、心有余悸,更对我们敲响了安全的警钟。安全关系着我们的生命与健康,切不可麻痹大意。因此,我们一定要增强安全防范意识,提高自我保护能力。首先,要充分认识安全的重要性,树立高度的安全意识。在对待安全问题的态度上,有一种思想特别要不得!那就是认为提高安全意识,实施安全行为,是胆小怕事;而胆大妄为,敢于冒险是勇敢!这种思想是完全错误的!存在这种思想的人往往好出风头,不听教导,也最容易发生安全事故。比如,在公路上飞车的大多会发生交通事故,手持鞭炮燃放的大多会被炸伤,喜欢追逐打闹的大多会发生碰撞事故,喜欢舞刀弄枪的往往会造成伤害……

上一页123...383940414243444546474849下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!