本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
本节内容是学生学习了任意角和弧度制,任意角的三角函数后,安排的一节继续深入学习内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数知识的基础,在教材中起承上启下的作用。同时,它体现的数学思想与方法在整个中学数学学习中起重要作用。课程目标1.理解并掌握同角三角函数基本关系式的推导及应用.2.会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.数学学科素养1.数学抽象:理解同角三角函数基本关系式;2.逻辑推理: “sin α±cos α”同“sin αcos α”间的关系;3.数学运算:利用同角三角函数的基本关系式进行化简、求值与恒等式证明重点:理解并掌握同角三角函数基本关系式的推导及应用; 难点:会利用同角三角函数的基本关系式进行化简、求值与恒等式证明.
2.内容内在逻辑本单元《责任与角色同在》重点在责任意识的培养,为培养学生服务社会的 精神做好铺垫。第一框“我对谁负责 谁对我负责”,是从“认识责任”的角度厘清责任的 相关知识,包含责任的含义、责任的来源、责任与角色的关系,使学生明确自身 应承担的责任,理解承担责任对个人和社会的意义。第二框“做负责任的人”,是在第一框“认识责任”的基础之上,进一步探 讨“承担责任”。引导学生认识到承担责任意味着要付出一定的代价,也会获得 回报,要学会合理选择并对自己的选择负责。对于不是自愿选择但又必须做的事 要自觉承担、尽力做好,努力向履行社会责任却不计得失的人学习。综合来看,第一框主要帮助学生从思想上认清责任的来源以及责任与角色的 关系,明确责任是相互的。要成为负责任的人,关键还是要落实到行动中。第二 框则进一步引导学生从行动上提高责任意识, 主动承担责任。两框内容是有机统 一的。
(一) 课标要求本单元所依据的课程标准是道德与法治课程标准 (2022年版) :第 四部分课程内容第四学段 (7-9年级) 国情教育中的:1. “了解世界正处于百年未有之大变局 ,具有初步的国际视野 , 了 解全人类共同价值的内涵 ,领悟构建人类命运共同体的意义 。 ”2. “ 以 “于变局中开新局 ”为议题 ,结合实例分析如何应对人类共 同面对的重大挑战 ,认识中国的发展离不开世界 ,世界的繁荣也需要中 国 。 ”3. “通过与中华优秀文化传统 、革命传统 、 国情教育等方面的关联 ,从真实的社会情境角度进行道德教育 ,强化学生的道德体验和道德实 践 , 旨在引导学生正确认识 自 己 , 以及个人与家庭 、他人 、社会 、 国家 和人类文明的关系 , 了解国家发展和世界发展大势 ,增强社会责任感和 担当意识 ,立志做社会主义建设者和接班人 。 ”
解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2个.答案:B2.若A_n^2=3C_(n"-" 1)^2,则n的值为( )A.4 B.5 C.6 D.7 解析:因为A_n^2=3C_(n"-" 1)^2,所以n(n-1)=(3"(" n"-" 1")(" n"-" 2")" )/2,解得n=6.故选C.答案:C 3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 个. 解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为C_5^4=5.答案:54.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?解:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:第1类,共线的4个点中有2个点作为三角形的顶点,共有C_4^2·C_8^1=48(个)不同的三角形;第2类,共线的4个点中有1个点作为三角形的顶点,共有C_4^1·C_8^2=112(个)不同的三角形;第3类,共线的4个点中没有点作为三角形的顶点,共有C_8^3=56(个)不同的三角形.由分类加法计数原理,不同的三角形共有48+112+56=216(个).(方法二 间接法)C_12^3-C_4^3=220-4=216(个).
㈡教学目标⒈知识目标:①理解同类项的概念,并能辨别同类项;②掌握合并同类项的法则,并能熟练运用.⒉能力目标:①通过创设教学情景,使学生积极主动地参与到知识的产生过程中,培养学生的归纳、抽象概括能力;②通过巩固练习,增强学生运用数学的意识,提高学生的辨别能力和计算能力.⒊情感目标:①让学生学会在独立思考的基础上积极参与数学问题的讨论,享受通过运用知识解决问题的成功体验,增强学好数学的信心;②通过教学,使学生体验“由特殊到一般、再由一般到特殊”这一认识规律,接受辩证唯物主义认识论的教育.
一、说教材1.教材分析《同级混合运算》是九年义务教育人教版二年级下册第五单元的教学内容。教材创设了“图书阅览室”问题情境,目的是为了让学生了解脱式运算,了解没有括号的算式里,只有加减法或只有乘除法,都要从左往右按顺序计算。使他们树立学习数学的信心,逐步提高他们的计算能力。 2.教学目标知识目标:借助解决问题的过程让学生明白“在同级的混合运算中,应从左往右依次计算”的道理。能力目标:在经历探索和交流的过程中,理解并掌握同级运算的运算顺序,能正确运用运算顺序进行计算,并能正确进行脱式计算的书写。情感目标:培养学生养成先看运算顺序,再进行计算的良好习惯,同时提高学生的计算能力。3.教学重难点教学重点:理解并掌握同级运算的运算顺序,并能正确地进行脱式计算。教学难点:能正确进行脱式计算,掌握脱式计算的书写格式。二、说教法根据新课程理念,学生已有的知识、生活经验,结合教材的特点,我采用了以下教法:1、情景教学法:新课开始,让学生通过图书馆这一情景,理解运算顺序。2、发现、讨论法:利用我们小组合作座位优势,让小组间讨论、说计算过程,从而掌握计算方法。三、说学法运用书本为载体,以观察、比较、小组讨论、推理和应用及口算为主线,目的是为了使学生对学习有兴趣和留给学生学习思考的空间。
一、教学重难点有效引导学生反思本人和父母的情感,回想父母对本人的付出,表达对父母的爱,养成感恩父母、好好学习的氛围。二、教学流程 (1)导入:1.黑板板书:父母爱 爱父母2.导语:同学们,今天是新学期开学的第一天。在父母的关心下,我们一天天地茁壮生长,今天终于成长为一名四年级小学生了。今天的课,就以“父母爱爱父母”为主题,开展我们的课堂。
例7 用描述法表示抛物线y=x2+1上的点构成的集合.【答案】见解析 【解析】 抛物线y=x2+1上的点构成的集合可表示为:{(x,y)|y=x2+1}.变式1.[变条件,变设问]本题中点的集合若改为“{x|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{x|y=x2+1}的代表元素是x,且x∈R,所以{x|y=x2+1}中的元素是全体实数.变式2.[变条件,变设问]本题中点的集合若改为“{y|y=x2+1}”,则集合中的元素是什么?【答案】见解析 【解析】集合{ y| y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1,所以{ y| y=x2+1}={ y| y≥1},所以集合中的元素是大于等于1的全体实数.解题技巧(认识集合含义的2个步骤)一看代表元素,是数集还是点集,二看元素满足什么条件即有什么公共特性。
(1)第一环节:讲解活动主题,提出问题讨论 1.让学生们说一说自己有哪些习惯。 2.老师根据学生发言,对习惯进行简单的分类,如分为生活习惯和学习习惯,好的习惯和坏的习惯等等,并在黑板上进行板书,大纲式列出来。 3.老师进行归纳小结:习惯是一种态度,同学们说的习惯中,有生活习惯、有学习习惯,有些是好的习惯,有的是坏的习惯。其实从我们出生的那一天,我们就开始有意无意地养成习惯......比如今天,当我们走进课堂,其实就已经开始了“好好学习”这个习惯养成的第一步....
(1)第一环节:讲解活动主题,提出问题讨论 1.让学生们说一说自己有哪些习惯。 2.老师根据学生发言,对习惯进行简单的分类,如分为生活习惯和学习习惯,好的习惯和坏的习惯等等,并在黑板上进行板书,大纲式列出来。 3.老师进行归纳小结:习惯是一种态度,同学们说的习惯中,有生活习惯、有学习习惯,有些是好的习惯,有的是坏的习惯。其实从我们出生的那一天,我们就开始有意无意地养成习惯......比如今天,当我们走进课堂,其实就已经开始了“好好学习”这个习惯养成的第一步....
练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)
4、简单小结,内化知识引导学生总结出学习的课题(教师板书),学生再明确表达出“同分母分数加减混合运算的顺序与证书加减混合运算的顺序完全相同,计算方法与同分母分数加减法的计算方法相同,即分母不变,分子相加减。注意能月份的一定要约成最简分数为止。”,(三)巩固练习、拓展应用1、基础练习2、引申练习3、解决实际问题 【精心设计练习,既有与例题程度相当的“保底”题,又有与生活密切相关的变式题,拓展思维,培养创新意识,展现数学的应用价值,让学生体会到学习数学有用,生活处处离不开数学。同时适时进行环保教育和爱国主义教育,起到了教书育人的作用。】五、说板书设计此板书力图板书的简洁美,能突出教学的重难点,提示了方法过程。
(3)移项得-4x=4+8,合并同类项得-4x=12,系数化成1得x=-3;(4)移项得1.3x+0.5x=0.7+6.5,合并同类项得1.8x=7.2,系数化成1得x=4.方法总结:将所有含未知数的项移到方程的左边,常数项移到方程的右边,然后合并同类项,最后将未知数的系数化为1.特别注意移项要变号.探究点三:列一元一次方程解应用题把一批图书分给七年级某班的同学阅读,若每人分3本,则剩余20本,若每人分4本,则缺25本,这个班有多少学生?解析:根据实际书的数量可得相应的等量关系:3×学生数量+20=4×学生数量-25,把相关数值代入即可求解.解:设这个班有x个学生,根据题意得3x+20=4x-25,移项得3x-4x=-25-20,合并同类项得-x=-45,系数化成1得x=45.答:这个班有45人.方法总结:列方程解应用题时,应抓住题目中的“相等”、“谁比谁多多少”等表示数量关系的词语,以便从中找出合适的等量关系列方程.
课题序号 授课班级 授课课时2授课形式 教学方法 授课章节 名称9.5柱、锥、球及其组合体使用教具 教学目的1、使学生认识柱、锥、球及其组合体的结构特征,并能运用这些特征描述生活中简单物体的结构。 2、让学生了解柱、锥、球的侧面积和体积的计算公式。 3、培养学生观察能力、计算能力。
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20
【教学内容】一、农业资源的综合开发1、目的和意义(1) 目的:为了充分、合理地利用丘陵山区丰富的自然资源,使山区日益繁荣。(2) 意义:有利于低山丘陵山地某一种自然资源的多方面利用和多层次利用。2、开发模式(1)走立体化农业的道路①发展立体化农业的原因:南方低山丘陵区的地形地貌多样,山地与平原的比例为4:1;人口密度大,人均耕地少,可耕地后备资源不足,人多地少的矛盾突出,生态环境状况脆弱。②千烟洲的立体农业生产体系土地利用结构:土地利用方式多样化(林地、草地、耕地、水面甚至家庭院落都已被利用);农业生产类型多样(林业、畜牧业、渔业、种植业等都有安排),且林业用地(包括果园和经济林地)面积最大,超过农业用地的一半,反映出千烟洲的农业结构已从过去的以粮食生产为主转变到现在的以林业为主。布局形式:丘山——丘下为“用才林——经济林和毛竹——果园或人工草地——农业——鱼塘”。
本节是新人教A版高中数学必修1第1章第1节第3部分的内容。在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础。本节内容主要介绍集合的基本运算一并集、交集、补集。是对集合基木知识的深入研究。在此,通过适当的问题情境,使学生感受、认识并掌握集合的三种基本运算。本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用。本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点。A.理解两个集合的并集与交集的含义,会求简单集合的交、并运算;B.理解补集的含义,会求给定子集的补集;C.能使用 图表示集合的关系及运算。 1.数学抽象:集合交集、并集、补集的含义;2.数学运算:集合的运算;3.直观想象:用 图、数轴表示集合的关系及运算。
集合的基本运算是人教版普通高中课程标准实验教科书,数学必修1第一章第三节的内容. 在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础. 本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用. 本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点.课程目标1. 理解两个集合的并集与交集的含义,能求两个集合的并集与交集;2. 理解全集和补集的含义,能求给定集合的补集; 3. 能使用Venn图表达集合的基本关系与基本运算.数学学科素养1.数学抽象:并集、交集、全集、补集含义的理解;2.逻辑推理:并集、交集及补集的性质的推导;3.数学运算:求 两个集合的并集、交集及补集,已知并集、交集及补集的性质求参数(参数的范围);4.数据分析:通过并集、交集及补集的性质列不等式组,此过程中重点关注端点是否含“=”及?问题;