提供各类精美PPT模板下载
当前位置:首页 > Word模板 > 教育教学 > 课件教案> 人教版高中数学选修3组合与组合数教学设计
  • 收藏模板
    下载模板
  • 模板信息
  • 更新时间:2023-11-01
  • 字数:约5610字
  • 页数:约9页
  • 格式:.docx
  • 推荐版本:Office2016及以上版本
  • 售价:5 金币 / 会员免费

您可能喜欢的文档

  • 人教版高中数学选修3排列与排列数教学设计

    人教版高中数学选修3排列与排列数教学设计

    4.有8种不同的菜种,任选4种种在不同土质的4块地里,有 种不同的种法. 解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A_8^4 =8×7×6×5=1 680(种).答案:1 6805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6 500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A_3^1种排法,其他位上有A_6^3种排法,由分步乘法计数原理,知共有四位偶数A_3^1·A_6^3=360(个);能被5整除的数个位必须是5,故有A_6^3=120(个).(2)最高位上是7时大于6 500,有A_6^3种,最高位上是6时,百位上只能是7或5,故有2×A_5^2种.由分类加法计数原理知,这些四位数中大于6 500的共有A_6^3+2×A_5^2=160(个).

  • 人教版高中数学选修3超几何分布教学设计

    人教版高中数学选修3超几何分布教学设计

    探究新知问题1:已知100件产品中有8件次品,现从中采用有放回方式随机抽取4件.设抽取的4件产品中次品数为X,求随机变量X的分布列.(1):采用有放回抽样,随机变量X服从二项分布吗?采用有放回抽样,则每次抽到次品的概率为0.08,且各次抽样的结果相互独立,此时X服从二项分布,即X~B(4,0.08).(2):如果采用不放回抽样,抽取的4件产品中次品数X服从二项分布吗?若不服从,那么X的分布列是什么?不服从,根据古典概型求X的分布列.解:从100件产品中任取4件有 C_100^4 种不同的取法,从100件产品中任取4件,次品数X可能取0,1,2,3,4.恰有k件次品的取法有C_8^k C_92^(4-k)种.一般地,假设一批产品共有N件,其中有M件次品.从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=CkM Cn-kN-M CnN ,k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M},则称随机变量X服从超几何分布.

  • 人教版高中数学选修3二项式定理教学设计

    人教版高中数学选修3二项式定理教学设计

    二项式定理形式上的特点(1)二项展开式有n+1项,而不是n项.(2)二项式系数都是C_n^k(k=0,1,2,…,n),它与二项展开式中某一项的系数不一定相等.(3)二项展开式中的二项式系数的和等于2n,即C_n^0+C_n^1+C_n^2+…+C_n^n=2n.(4)在排列方式上,按照字母a的降幂排列,从第一项起,次数由n次逐项减少1次直到0次,同时字母b按升幂排列,次数由0次逐项增加1次直到n次.1.判断(正确的打“√”,错误的打“×”)(1)(a+b)n展开式中共有n项. ( )(2)在公式中,交换a,b的顺序对各项没有影响. ( )(3)Cknan-kbk是(a+b)n展开式中的第k项. ( )(4)(a-b)n与(a+b)n的二项式展开式的二项式系数相同. ( )[解析] (1)× 因为(a+b)n展开式中共有n+1项.(2)× 因为二项式的第k+1项Cknan-kbk和(b+a)n的展开式的第k+1项Cknbn-kak是不同的,其中的a,b是不能随便交换的.(3)× 因为Cknan-kbk是(a+b)n展开式中的第k+1项.(4)√ 因为(a-b)n与(a+b)n的二项式展开式的二项式系数都是Crn.[答案] (1)× (2)× (3)× (4)√

  • 人教版高中数学选修3全概率公式教学设计

    人教版高中数学选修3全概率公式教学设计

    2.某小组有20名射手,其中1,2,3,4级射手分别为2,6,9,3名.又若选1,2,3,4级射手参加比赛,则在比赛中射中目标的概率分别为0.85,0.64,0.45,0.32,今随机选一人参加比赛,则该小组比赛中射中目标的概率为________. 【解析】设B表示“该小组比赛中射中目标”,Ai(i=1,2,3,4)表示“选i级射手参加比赛”,则P(B)= P(Ai)P(B|Ai)= 2/20×0.85+ 6/20 ×0.64+ 9/20×0.45+ 3/20×0.32=0.527 5.答案:0.527 53.两批相同的产品各有12件和10件,每批产品中各有1件废品,现在先从第1批产品中任取1件放入第2批中,然后从第2批中任取1件,则取到废品的概率为________. 【解析】设A表示“取到废品”,B表示“从第1批中取到废品”,有P(B)= 112,P(A|B)= 2/11 ,P(A| )= 1/11所以P(A)=P(B)P(A|B)+P( )P(A| )4.有一批同一型号的产品,已知其中由一厂生产的占 30%, 二厂生产的占 50% , 三厂生产的占 20%, 又知这三个厂的产品次品率分别为2% , 1%, 1%,问从这批产品中任取一件是次品的概率是多少?

  • 人教版高中数学选修3条件概率教学设计

    人教版高中数学选修3条件概率教学设计

    (2)方法一:第一次取到一件不合格品,还剩下99件产品,其中有4件不合格品,95件合格品,于是第二次又取到不合格品的概率为4/99,由于这是一个条件概率,所以P(B|A)=4/99.方法二:根据条件概率的定义,先求出事件A,B同时发生的概率P(AB)=(C_5^2)/(C_100^2 )=1/495,所以P(B|A)=(P"(" AB")" )/(P"(" A")" )=(1/495)/(5/100)=4/99.6.在某次考试中,要从20道题中随机地抽出6道题,若考生至少答对其中的4道题即可通过;若至少答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题而另一道答错”,事件C为“该考生答对了其中4道题而另2道题答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A,B,C两两互斥,且D=A∪B∪C,E=A∪B,由古典概型的概率公式及加法公式可知P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=(C_10^6)/(C_20^6 )+(C_10^5 C_10^1)/(C_20^6 )+(C_10^4 C_10^2)/(C_20^6 )=(12" " 180)/(C_20^6 ),P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=(P"(" A")" )/(P"(" D")" )+(P"(" B")" )/(P"(" D")" )=(210/(C_20^6 ))/((12" " 180)/(C_20^6 ))+((2" " 520)/(C_20^6 ))/((12" " 180)/(C_20^6 ))=13/58,即所求概率为13/58.

  • 查看更多相关Word文档

组合与组合数教学设计

本节课选自《2019人教A版高中数学选择性必修第三册》,第六章《计数原理》,本节课主本节课主要学习组合与组合数.

排列与组合是在学习了两个计数原理之后,由于排列、组合及二项式定理的研究都是以两个计数原理为基础,同时排列和组合又能进一步简化和优化计数问题。教学的重点是组合的理解,利用计数原理及排列数公式推导组合数公式,注意区分排列与组合的区别,难点是运用组合解决实际问题。

课件教案

课程目标

学科素养

A. 理解并掌握组合、组合数的概念,掌握组合与排列之间的联系与区别.

B.熟练掌握组合数公式及组合数的两个性质,并运用于计算之中.

C.能够运用排列组合公式及计数原理解决一些简单的应用问题,提高学生的数学应用能力与分析问题、解决问题的能力.

1.数学抽象:组合的概念

2.逻辑推理:组合数公式的推导

3.数学运算:组合数的计算及性质

4.数学建模:运用组合解决计数问题

重点:组合、组合数的概念并运用排列组合公式解决问题

难点:组合与排列之间的联系与区别

多媒体

教学过程

教学设计意图

核心素养目标

一、问题探究

问题1. 从甲乙丙三名同学中选两名去参加一项活动,有多少种不同的选法?这一问题与6.2.1节问题一有什么联系与区别?

分析:在6.2.1 节问题16种选法中,存在“甲上午,乙下午”和“甲上午,乙下午” 2种不同顺序的选法,我们可以将它看成先选出甲、乙两名同学,然后再分配上午和下午而得到的.同样,先选出甲、丙、或乙、丙,再分配上午和下午也各有2种方法.从而甲、乙、丙3名同选2名去参加一项活动,就只需考虑选出的2名同学作为一组,不需要考虑他们的顺序。于是,在6.2.1节问题16种选法中,将选出的2名同学作为一组的选法就只有如下3种情况:

甲乙、甲丙、乙丙.

从三个不同元素中取出两个元素作为一组一共有多少个不同的组?

一、组合的相关概念

1.组合:一般地,n个不同元素中取出m(m≤n)个元素作为一组,叫做从n个不同元素中取出m个元素的一个组合.

2.相同组合:两个组合只要元素相同,不论元素的顺序如何,都是相同的.

名师点析排列与组合的区别与联系

(1)共同点:两者都是从n个不同元素中取出m(m≤n)个元素.

(2)不同点:排列与元素的顺序有关,组合与元素的顺序无关.

1.校门口停放着9辆共享自行车,其中黄色、红色和绿色的各有3辆,下面的问题是排列问题,还是组合问题?

1)从中选3辆,有多少种不同的方法?

2)从中选2辆给3位同学有多少种不同的方法?

1)与顺序无关,是组合问题;

2)选出2辆给3位同学是有顺序的,是排列问题。

5.平面内有ABCD4个点.

1)以其中2个点为端点的有向线段共有多少条?

2)以其中2个点为端点的线段共有多少条?

分析:(1)确定一条有向线段,不仅要确定两个端点,还要考虑他们的顺序是排列问题;

2)确定一条线段,只需确定两个端点,而不需要考虑它们的顺序是组合问题.

解:(1)一条有向线段的两个端点,要分起点和终点,以平面内4个点中的2个为端点的有向线段条数,就是从4个不同元素中取出2个元素的排列数,即有向线段条数为=43=12.

2)由于不考虑两个端点的顺序,因此将(1)中端点相同、方向不同的2条有向线段作为一条线段,就是中平面内4个点中的2个点为端点的线段的条数,

共有如下6条:

AB,AC,AD,BC,BD,CD.

问题2:利用排列和组合之间的关系,以“元素相同为标准分类,你能建立起例51)中排列和(2)中组合之间的对应关系吗?

进一步地,能否从这种对应关系出发,由排列数求出组合的个数?

二、组合数与组合数公式

1.组合数的定义:n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,

叫做从n个不同元素中取出m个元素的组合数,

用符号表示.

上述公式称为组合数公式.

2.组合数公式:,这里n,mN*,并且m≤n.

另外,我们规定=1.

二、典例解析

观察例6的(1)与(2),(3)与(4)的结果,你有什么发现?(1)与(2)分别用了不同形式的组合数公式,你对公式的选择有什么想法?

1.公式(m,nN*,m≤n),一般用于求值计算.

2.公式(m,nN*,m≤n),一般用于化简证明.在具体选择公式时,要根据题目特点正确选择.

3.根据题目特点合理选用组合数的两个性质,能起到简化运算的作用,需熟练掌握.

跟踪训练1. (1)计算:3-2;.

(2)求证:+2.

分析:(1)先考虑利用组合数的性质对原式进行化简,再利用组合数公式展开计算.(2)式子中涉及字母,可以用阶乘式证明.

7. 100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3.

1)有多少种不同的抽法?

2)抽出的3件中恰好有1件是次品的抽法有多少种?

3)抽出的3件中至少有1件是次品的抽法有多少种?

分析:1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数;

2)分两步,第一步从2件次品中抽出1件次品,第二步从98件合格品中抽出2件合格品,由乘法原理可得;

3)可从反面考虑,其反面是抽出的3件全是合格品,求出方法数后,由第(1)题的结论减去这个结果即可得.

解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,共有()

2)从2件次品中抽出1件次品的抽法有种,

98件合格品中抽出2件合格品的抽法有种,

因此抽出的3件中恰好有1件次品的抽法有().

3)抽出的3件产品中至少有1件是次品的抽法的种数,

也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,

().

组合问题的基本解法

(1)判断是否为组合问题;

(2)是否分类或分步;

(3)根据组合的相关知识进行求解.

跟踪训练2.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?

(1)任意选5;

(2)甲、乙、丙三人必须参加;

(3)甲、乙、丙三人不能参加;

(4)甲、乙、丙三人只能有1人参加;

(5)甲、乙、丙三人至少1人参加.

分析:本题属于组合问题中的最基本的问题,可根据题意分别对不同问题中的不含作出正确的判断和分析.注意至少”“至多问题,运用间接法求解会简化思维过程.

:(1)=792()不同的选法.

(2)甲、乙、丙三人必须参加,只需从另外的9人中选2,共有=36()不同的选法.

(3)甲、乙、丙三人不能参加,只需从另外的9人中选5,共有=126()不同的选法.

(4)甲、乙、丙三人只能有1人参加,分两步,先从甲、乙、丙

中选1,=3()选法,再从另外的9人中选4人有种选法.共有=378()不同的选法.

(5)(方法一 直接法)可分为三类:

1,甲、乙、丙中有1人参加,种选法;

2,甲、乙、丙中有2人参加,种选法;

3,甲、乙、丙3人均参加,种选法.

所以,共有=666()不同的选法.

(方法二 间接法)12人中任意选5人共有,甲、乙、丙三人不能参加的有,

所以,共有=666()不同的选法.

变式:若本例题条件不变,甲、乙、丙三人至多2人参加,有多少种不同的选法?

:(方法一 直接法)甲、乙、丙三人至多2人参加,可分为三类:

1,甲、乙、丙都不参加,种选法;

2,甲、乙、丙中有1人参加,种选法;

3,甲、乙、丙中有2人参加,种选法.

共有=756()不同的选法.

(方法二 间接法)12人中任意选5人共有,甲、乙、丙三人全参加的有种选法,所以共有=756()不同的选法.

通过具体问题,分析、比较、归纳出组合的概念。发展学生数学运算,数学抽象和数学建模的核心素养。

在典例分析和练习中让学生熟悉组合和组合数的概念,进而灵活运用排列数解决问题。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。

三、达标检测

1.10个不同的数中任取2个数,求其和、差、积、商这四个问题中,属于组合的有( )

A.1 B.2 C.3 D.4

解析:因为减法和除法运算中交换两个数的位置对计算结果有影响,所以属于组合的有2.

答案:B

2.=3,n的值为( )

A.4 B.5 C.6 D.7

解析:因为=3,所以n(n-1)=,解得n=6.故选C.

答案:C

3.若集合A={a1,a2,a3,a4,a5},则集合A的子集中含有4个元素的子集共有 .

解析:满足要求的子集中含有4个元素,由集合中元素的无序性,知其子集个数为课件教案=5.

答案:5

4.平面内有12个点,其中有4个点共线,此外再无任何3点共线,以这些点为顶点,可得多少个不同的三角形?

:(方法一)我们把从共线的4个点中取点的多少作为分类的标准:

1,共线的4个点中有2个点作为三角形的顶点,共有=48()不同的三角形;

2,共线的4个点中有1个点作为三角形的顶点,共有=112()不同的三角形;

3,共线的4个点中没有点作为三角形的顶点,共有=56()不同的三角形.

由分类加法计数原理,不同的三角形共有

48+112+56=216().

(方法二 间接法)=220-4=216().

通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。


最新课件教案文档
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • 公司2024第一季度意识形态工作联席会议总结

    公司2024第一季度意识形态工作联席会议总结

    一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。

  • 关于2024年上半年工作总结和下半年工作计划

    关于2024年上半年工作总结和下半年工作计划

    二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。

  • XX区民政局党支部开展主题教育工作情况总结报告

    XX区民政局党支部开展主题教育工作情况总结报告

    二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。

  • 交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。

  • XX区文旅体局2023年工作总结 及2024年工作安排

    XX区文旅体局2023年工作总结 及2024年工作安排

    三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。

今日更新Word
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • ××县招商局2024年上半年工作总结

    ××县招商局2024年上半年工作总结

    二是全力推进在谈项目落地。认真落实“首席服务官”责任制,切实做好上海中道易新材料有机硅复配硅油项目、海南中顾垃圾焚烧发电炉渣综合利用项目、天勤生物生物实验基地项目、恺德集团文旅康养产业项目、三一重能风力发电项目、中国供销集团冷链物流项目跟踪对接,协调解决项目落户过程中存在的困难和问题,力争早日实现成果转化。三是强化招商工作考核督办。持续加大全县招商引资工作统筹调度及业务指导,贯彻落实项目建设“6421”时限及“每月通报、季度排名、半年分析、年终奖励”相关要求,通过“比实绩、晒单子、亮数据、拼项目”,进一步营造“比学赶超”浓厚氛围,掀起招商引资和项目建设新热潮。四是持续优化园区企业服务。

  • “四零”承诺服务创建工作总结

    “四零”承诺服务创建工作总结

    (二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。

  • “改作风、提效能”专项行动工作总结

    “改作风、提效能”专项行动工作总结

    (五)服务群众提效能方面。一是政府采购服务提档升级。建成“全区一张网”,各类采购主体所有业务实现“一网通办,提升办事效率;全面实现远程开标和不见面开标,降低供应商成本;要求400万元以上工程采购项目预留采购份额提高至采购比例的40%以上,支持中小企业发展。2022年,我区政府采购荣获”中国政府采购奖“,并以全国第一的成绩获得数字政府采购耕耘奖、新闻宣传奖,以各省中第一的成绩获得年度创新奖。二是财政电子票据便民利民。全区财政电子票据开具量突破1亿张,涉及资金810.87亿元。特别是在医疗领域,全区241家二级以上公立医疗机构均已全部上线医疗收费电子票据,大大解决了群众看病排队等待时间长、缴费取票不方便的问题,让患者”省心、省时、省力“。

  • “大学习、大讨论、大调研”活动情况总结报告

    “大学习、大讨论、大调研”活动情况总结报告

    一、活动开展情况及成效按照省委、市委对“大学习、大讨论、大调研”活动的部署要求,县委立即行动,于8月20日组织召开常委会会议,专题传达学习省委X在读书班上的讲话精神。5月2日,县委召开“大学习、大讨论、大调研”活动推进会,及时对活动开展的相关要求、任务进行再安排再部署,会后制定并下发了活动实施方案、重点课题调研方案、宣传报道方案等系列文件,有效指导活动开展。5月17日、9月1日,县委再次召开常委会会议,专题听取“大学习、大讨论、大调研”活动开展情况汇报,研究部署下阶段工作。9月13日,召开全县“大学习大讨论大调研”活动工作推进座谈会,深入贯彻全省、全市“大学习大讨论大调研”活动工作推进座谈会精神,总结交流活动经验,对下一阶段活动开展进行安排部署。“大学习、大讨论、大调研”活动的有序开展,为砥砺前行、底部崛起的X注入了强大的精神动力。

  • 2024年度工作计划汇编(18篇)

    2024年度工作计划汇编(18篇)

    1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。