二、活动准备 1.童话故事(附后)的电脑课件。 2.立体环境:一棵大树、树洞、树桩(小树杆内有水)、草地、小河、平衡木。 3.材料:小石子、水箱(池塘)、铁钩、救生圈、磁铁、透明胶、树叶、塑料瓶子、竹棒、绳子、船、浮板、地板胶。 4.头饰:小熊、小猴、小鹿、小羊、啄木鸟各三个。 三、活动过程1.借助童话故事,把幼儿引入一个充满问题的世界。 (1)在茂密的树木里,生活着许多动物。你猜,都有些什么动物呢?(激发幼儿的兴趣) (2)有一天,小动物在树木里玩,你看他们发生了什么事情? (3)结合电脑课件,教师有表情地讲述童话故事,然后提问:树木里有什么动物?它们遇到了什么困难?
主持人甲:听完这几则名人的故事,我们会发现:树立了远大理想的人,就意味着事业成功了一半。无志之人,不可能激起生活的浪花;无志之人,不可能享受事业的种种辉煌。 主持人乙:当今世界已步入知识经济时代,没有知识必将被社会洪流无情淘汰,更谈不上在21世纪立足。回过头来,看看自己,作为世纪之交的毕业生,21世纪祖国建设的主力军,我们今天有什么理想和抱负呢?勇敢的你,站到前面来,把你的雄心壮志说出来,把你装着理想的纸鹤飞到我们的理想旗帜中。这是你实现理想的第一步,就是你有巨大的勇气。 主持人甲:我们知道,理想的实现并不容易。 主持人乙:我们明白,理想的实现需要辛勤的汗水。 合:我们都会付出我们的勤劳,实现我们从小立下的志向。 主持人甲:不知20年后的你是什么样子,我又是什么样子。现在请大家来看看20年后的我们。
三、拒绝与不拒绝之间的心里冲突1.教师出示故事:小强的好友在小强做作业的时候邀请小强一起看卡通片的情境图片。教师:如果你是小强,你会怎么想,怎么做?学生分别讲述理由,全班讨论,并评价哪一种做法最好。2.教师小结:有时候,我们会遇到类似这样的多种选择,我们可根据事情的重要性选择我们当时应该做的事,不能因一些诱惑而松懈。当然,我们还需注意做事、谈话的方式方法,以免辜负别人的好意,造成不必要的误解。四、拒绝的方式1.教师:在阳光、雨露的滋润下,我们的日子过得丰富多彩。但生活中,也有一些活动不适合我们参与,也有一些事情是我们不能做的,这时候,我们该如何拒绝呢?2.小组讨论,用具体的事例说明什么时候,什么事情,该如何拒绝。
一、活动目标能了解妈妈哺育孩子的辛苦,感受妈妈对自己的爱,懂得关心爱护妈妈二、 活动重难点重点:让幼儿充分感受妈妈的爱。难点:让幼儿懂得爱护妈妈。三、 活动准备1、 妈妈怀孕时的照片、各种哺育孩子的生活照以及录像。2、 音乐《小乌鸦爱妈妈》。3、 邀请家长1—2名。
方法点拨教师:有的同学叙述事实论据时,不突出重点和精华,不注意取舍,水分太多,有许多的叙述描写,有时还有详细的故事情节,文章几乎成了记叙文,使文章的论点无法得到充分的证明,这是写议论文的大忌。那么:议论文中的记叙有哪些特点?同学各抒己见。投影显示:1.议论中的记叙不是单纯的写人记事,记叙文字是为议论服务的,其目的是为作者所阐明的道理提供事实依据。所以,在记叙时要求简洁、概括,舍弃其中的细节,仅仅交代清楚事件或者人物的概貌即可,一般不在各种描写手段上下功夫,只要把能证明观点的那个部分、侧面交代清楚就行了。2.议论文中的记叙性文字不得超过总字数的1/3,否则视为文体不当。能力提升一、教师:了解了议论文中的记叙的特点,接下来我们看看今天的话题:“爱的奉献”,你想从哪个角度立论?有哪些素材?
【活动目标】 1、感知人的声音及自然界中各种声音的变化。 2、运用多种方法让幼儿自己的声音发生变化。【活动准备】 1、各种声音的录音(如,下小雨声、尖细的说话声、很慢的高跟鞋走路声;下大雨声、粗重的说话声、很快的高跟鞋走路声;婴儿的哭声、幼儿的说话声、成年的说话声、老年人的说话声)。 2、眼罩一个、录音机一台。【活动过程】 一、倾听两组不同的声音,并进行比较。 1、请幼儿倾听第一段录音:下小雨声、尖细的说话声、很慢的高跟鞋走路声。提问:你听到了什么声音? 2、请幼儿倾听第二段录音:下大雨声,粗重的说话声、很快的高跟鞋走路声。提问:你听到了声音有什么变化吗?
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
教师:我们可以从诗歌运用“悲怆的诗句”去“反映热切的感情”角度去分析。教师指正:作为抒情的艺术,诗歌作品需要不断地强化自己的感情,以便能久久地拨动读者的心弦。这首诗中回荡着忧郁的调子,郁积着深深的忧伤。“为什么我的眼里常含泪水?/因为我对这土地爱得深沉…… ”句中交织着忧郁、悲怆之情,这种抒情基调是诗人敏感的心灵对民族苦难现实和人民悲苦生活的回应,是感情极度热切的反映。教师:我们可以从诗歌运用“强烈的对比”去“映射执着的爱”的角度去分析。教师指正:“假如我是一只鸟”全诗以这样一个出人意料的假设开头,使读者不禁发出疑问:“鸟”的形象和诗人所要歌颂的“土地”有着什么样的联系呢?这是诗人在开头留给我们的悬念。当读者为诗人不断歌唱的顽强生命力所吸引、折服时,诗篇却陡然来了一个大的转折——“我死了”,用身躯使土地肥沃,于是生前和死后形成了强烈的对比,而在这强烈的对比中一以贯之的是“鸟”对土地的执着的爱,这真是生于斯、歌于斯、葬于斯,至死不渝!至此开头的悬念也就解开了。
整体感知 齐诵诗歌,说说这首诗歌紧扣“土地”,作了哪些形象性的描述。 【交流点拨】点出土地情结。起始两句,诗人对土地的热爱,已到了不知道如何倾诉的地步,于是他舍弃人的思维语言而借用鸟的简单朴素的语言倾泻他的感情。“嘶哑”的歌声正能抒发作者对土地的义无反顾的眷恋和执着,于是土地情结的激越歌声由此响起。 倾吐土地情结。“被暴风雨所打击着的土地”“悲愤的河流”“激怒的风”“无比温柔的黎明”是作者所歌唱的对象,诗人没有沉溺于对“温柔”恬静的“黎明”的欣赏中,为了让自己的爱永远留给土地,他做出了庄严郑重的选择。 升华土地情结。一问一答,诗人由借鸟抒情转入直抒胸臆。太“深沉”太强烈的土地情结,已使人难以诉诸语言,只能凝成晶莹的泪水。“深沉”一词也许达不到与实际感情相适应的强度,于是其后紧跟着沉重的省略号。省略号中似乎涌动着潜流地火一般的激情,更为沉重地叩击着读者的心房,激起读者持续的共鸣。
活动设计:一、游戏:瞎子品食 请幼儿闭上眼睛,品尝各种黑色食品,了解它们的好味道,排除对黑色食品的排斥心理。二、了解黑色食品 1、认识几种常见的黑色食品2、观看录像片段,了解黑色食品的营养价值及功用。
目标导学四:赏析作品,把握诗歌艺术特色1.这首诗在结构上共分两节,请简要说说两节诗歌各有什么特点及它们之间的内在联系。明确:诗的第一节是从虚拟的视角,即从鸟儿的视角去想象,去表现鸟儿对土地的忠诚与挚爱,显得形象含蓄;第二节却换成实写的视角,即从作者自我的视角去实写自己“常含泪水的眼睛”,倾诉自己对土地的“深沉”之爱,是直抒胸臆。这样,虚境和实境的结合与对应,构筑了全诗内在完整的艺术空间;结果与原因的关联与对照,又构成了支撑全诗的内在逻辑结构。此外,从手法特点上看,第一节用的是比,是想象的境界;第二节则是直抒胸臆的写实。全诗由前面蒙太奇镜头式的画面暗示转到了后面作者的直接指点,以一个强有力的情感抒发结束了全篇,从而把注意力引到一个浓郁的情感氛围中,再一次感受到作者对土地的忠贞与挚爱。
1.制作红灯笼师:(展示漂亮的灯笼)小朋友们想不想自己亲手制作一个呢?生:好呀师:那小朋友们知道制作灯笼需要什么材料吗?生:彩纸、剪刀...师:没错,那老师先来展示一下怎么制作灯笼吧!(展示完后,开始让小朋友两两组合共同制作)2.制作灯笼剪纸师:小朋友们,刚刚是不是已经制作灯笼了呀?下面我们进行一个更好玩的环节?生:好呀好呀!师:那我先来展示一下咯,小朋友们别眨眼呀!(展示完后,开始让小朋友们独立完成)小结:通过制作共同合作制作灯笼与独自完成灯笼剪影,不仅使他们更能感知灯笼的形状,更能提高小朋友们的动手能力和思考力。
1、举例而生活还有类似的例子吗?2、为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,a的值可能是整数吗?a的值可能是分数吗?3、2.如下图B,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗?可能是分数吗?说明理由.4、上图是由16个边长是1的小正方形拼成,任意连接小正方形的若干个顶点,得到一些线段.试分别找出长度是有理数的线段和长度不是有理数的线段.你还能找到其他长度不是有理数的线段吗?