一、说教材:1.说课内容:本节课的内容是北师大版5年级数学下册第8单元的《复式折线统计图》。2.教材分析:这节课的内容是在学生学习了单式折线统计图和复式条形统计图的基础上教学的。这节课的内容包括制作复式折线统计图的必要性、制作方法以及对这种统计图的分析预测。教材在设计中,主要突出了以下两个方面:(1)对比。为了方便比较甲、乙两个城市各月的降水量,把两个单式折线统计图画在同一幅图上,变成复式折线统计图。让学生感受出现复式折线统计图的必要性和其带来的好处。(2)读图。通过对复式折线统计图中两条折线升降的分析,对数据进行合理的预测,这也是课标的要求。3.教材的地位和作用:本课的学习,不但可以用来解决日常生活中的一些实际问题,也是今后学习更多其他统计图的重要基础。
【教学程序】(一)导入:1.听《乌鸦喝水》的小故事。2.揭题:师:你知道乌鸦是通过什么方法喝到水的吗?这蕴涵了什么道理?这就是今天我们要学习的新课题《体积单位》。(出示课题)(二)教学“体积单位”。师出示图,请生比一比谁的体积大?[说明:教师通过两个长方体体积大小的比较,学生发现不好比较,从而指出计量物体的体积要用统一的体积单位。从而引入“体积单位”的教学]师:为了更准确的比较图中这两个长方体体积的大小,我们可以把它们切成若干个同样大小的正方体,只要数一数,每个长方体包含有几个这样的小正方体,就能准确地比出它们的大小。请生数一数,告诉老师谁的体积比较大?学生汇报(注意让学生说出数的方法)。师:像计量长度需要长度单位,计量面积需要面积单位,我们计量体积也需要有“体积单位”。为了更准确地计量出物体体积的大小,我们可以像图中这样用同样大小的正方体作为体积单位。
1.要有充分的直观操作。学生思维的特点一般的是从感性认识开始,然后形成表象,通过一系列的思维活动,上升到理性认识。本课的教学采用直观操作法,是一个重要的环节。2.启发学生独立思考。学生是学习的主体,只有引导学生独立地发现问题、思考问题、解决问题,才能收到事半功倍的教学效果。3.讲练结合。4.充分运用知识的迁移规律,引导学生掌握新知识。教学过程:三、说教学过程:(一)、创设情境上课前,教师先给大家讲一个与今天的学习内容有关的故事,希望同学们认真地听、认真地想。故事是这样的:大象过生日啦!那天来了很多的朋友,有小兔、小猴等等等等,可热闹啦!在众多的朋友中只数小兔最高兴,它乐什么呢?原来它知道了蛋糕的分配方案,认为自己分的蛋糕比小猴的大。蛋糕是这样分配的:分给小兔的蛋糕是棱长10厘米的正方体,分给小猴的蛋糕是棱长1分米的方体。(分别出示两块同样大小的正方体,用10厘米和1分米表示它们的棱长)
学生掌握数学概念过程的本身就是一个把教材知识结构转化成自己认知结构的过程,这一过程的结果可能形成正确的数学概念,也可能由于主、客观原因而形成一些错误的数学概念。因此,在这一阶段有两大任务要完成,一是强化已经形成的正确认识,二是修正某些错误认识,使掌握的概念都能正确反映数学对象的本质属性。在情境中解决问题是从新课教学到学生独立作业之间的一个重要环节,目的在于巩固所学知识,并把知识转化为技能。教材“试一试”和“练一练”的第1、2题,让学生通过观察、思考,并且在有了比较充分的感性体验的基础上揭示体积概念及让学生充分感受同一物体形状变了,但体积保持不变,增强实际体验。“练一练”第3题,让学生体会到如果每个杯子的大小不同,那么3杯就可能等于2杯,这是为后面体积单位作铺垫。
(一)说教法本节课我先出示情境图,鼓励学生分析情境中的数学信息和数量关系,明确所要解决的问题,然后了解要解决这个问题需要什么样的条件,进而列出算式。接着讨论具体的计算方法。教材中呈现了两种计算方法。在这个过程中,先让学生自主进行计算,再组织讨论和交流算法之间的联系,明白分数混合运算的顺序。通过本节教学,使学生学会有顺序的观察题、认真审题、分析数量关系、正确计算、概括总结、检查的学习习惯。(二)说学法本节课是分数加减法的第二课时,因为前面学习异分母分数的加减法以及应用异分母加减的知识,因此,大多数学生对这一类型的加减法已经有了一定的计算能力和计算方法,基于此,我在教学中将加减运算的学习和解决问题结合起来,在加强学生的计算能力的同时,更侧重了学生提出问题和解决问题的能力的训练,也就是让学生在经历探索运算方法的过程中,体验算法多样化。
五、说教学过程为了高效地实现教学目标,整个教学过程分为如下几个环节进行:环节一:创设情景,导入新课在新课开始时,用多媒体课件以PPT的形式展示几幅含有长方体和正方体的图片。即建筑物,道路和家具。让学生通过观察图片找出其中的长方体。然后,让学生联系到生活中的物体,找出2到3个长方体的实物。并在这些实物的基础上呈现长方体的几何图形。也由此导入新课——长方体的认识,板书课题,长方体的认识。环节二:合作学习,探究新知。在这个环节中,我设计了这样几个活动,来落实教学目标。活动一,“数一数”。把学生分成几个小组,让他们观察手中的长方体纸盒,请他们找出长方体有几个面,再找出面与面之间的线,由此导入棱的概念,通过观察,他们发现每三条棱相交于一点。由此导入顶点的概念,再找出有几个顶点。并在设计的表格中板书。
三、说学法有效的数学学习活动不是单纯地依赖模仿与记忆,而是一个有目的的、主动建构知识的过程。为此,我十分重视学生学习方法的指导,在本节课中,我指导学生学习的方法为:观察发现法、动手操作法、自主探究法、合作交流法,让他们在说一说、摆一摆、填一填、做一做、想一想等一系列活动中探索长方体体积的计算方法。我力求以"长方体、正方体体积"这一数学知识为载体,通过学生主动参与、自主探究、发现结论的过程,使学生的数学认知结构建立在自己的实践经验和主动建构之上。四、说教学流程教学时.我安排了情景引入.揭示课题,自主探究.推导公式,利用关系.类推公式,巩固练习.运用公式,全课总结.交流评价五个环节.(一)激情引趣.揭示课题.首先,通过比较生活中一些物体的大小,复习体积概念。
依据本节课的知识结构与学生的认知规律,这节课我是这样安排的:第一个环节:谈话交流,引入课题。先出示一个正方体。让学生说一说对正方体的认识,再让学生观察能看到几个面?分别是什么面?接着教师引出,既然同学们最多只能看见正方体的3个面,所以老师说这个正方体只有3个面露在外面。经过学生思考,确定还有两个面露在外面,然后出示课题-----露在外面的面。第二个环节:探索新知,发现规律。在这个环节中,我首先呈现一个摆放在墙角的小正方体:让孩子们观察有几个面露在外面,是哪几个面?这是一个简单的问题,学生通过观察都可以看到露在外面的面分别是上面,前面和侧面。然后计算露在外面的面的面积。学生自己尝试计算时,都能找到方法:计算一个小正方形的面积再乘以露在外面的面数就可以了。
5.游戏活动:每人从信封袋中挑选一个自己最喜欢的分数卡片。(1)最简分数上讲台,和最简分数相同的分数起立。联系生活实际发散性思考。(2)从剩下的同学中找到自己的好朋友。帮最后两名同学找最简分数作朋友。判断并说明理由。按要求参加活动,综合考核学生判断最简分数和对分数进行约分的能力。创设生活情景,提供了一些现实的学习材料,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;学好数学,为生活、生产服务,学数学真有价值。部分题目设计充满趣味性,把孩子拉入游戏之中,巩固本课的所有知识点。在引导学生积极观察、思考、联想、诱发学生的创新因素时,更应注意引导学生克服固定的思维模式,鼓励创造性地发现知识的规律和发表自己的独特见解。
最富趣味的是荷兰艺术家埃舍尔,他到西班牙旅行参观时,对一种名为阿罕拉的建筑物有很深的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺了种类繁多、美仑美奂的马赛克图案。Escher用数日的时间复制了这些图案,并得到了启发,创造了各种并不局限于几何图案的密铺图案,这些图案包括人、青蛙、鱼、鸟、蜥蜴,甚至是他凭空想象的物体。他创作的艺术作品,结合数学与艺术,给人留下深刻的印象,更让人对数学产生了另一种看法。欣赏埃舍尔的艺术世界:2、动手创作。(小小设计师)看了大艺术家的作品,你现在是不是也有了创作的冲动?下面,请你选一种或几种完全一样的图形进行密铺,可以自己设计颜色,比一比,谁的设计更美观、更新颖。(交流,展示)四、总结:谈收获体会我们今天只是研究了一些规则图形的简单的密铺。生活中还有各种各样的密铺现象。同学们可以到生活中去观察,也可以上网浏览。
密铺的历史背景1619年——数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。1891年——苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。
2、学生分析 其实学生对身体并不陌生,可以看得到、摸得着,但有时越是熟悉的事物学生越不容易产生关注,学生并不会花很多的时间去探究身体更多的奥秘,这恰是我们教学有价值的地方。我们可以在“熟悉”两个字上做文章,在课堂中利用学生已有的知识,建构本课新的知识体系。我期望通过本课教学后,学生不再对自己的身体熟视无睹,而会运用各种观察方法进行细致入微地观察,还能在这种强烈的兴趣地鼓舞下通过查资料等各种方式深入地研究自己的身体。
一、 说教材1、教材内容:人教版小学数学第十册《解简易方程》及练习二十六1~5题。2、教材简析:本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。3、教学目标:(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
我找了几名音准较好的学生来学习低声部的旋律,然后再把两声部合起来,音准较好的学生和我来扮演小树演唱低声部,大部分学生扮演蓝天演唱高声部。注意结束句的气息控制,指导学生用循环呼吸。这样,从先唱谱再唱词;先唱高声部,再两声部合唱。由简到难,逐步地演唱歌曲。降低了学生学习二声部歌曲的难度,也提高了课堂的时效性。4 表现歌曲引导学生边打拍子边分角色有感情的演唱歌曲,感受三拍子的音乐特点,进而唱出歌曲三拍子的流畅性和歌曲的情绪。使学生对歌曲更加熟悉。 (还可以加动作表演歌曲 )5 拓展延伸引发学生思考:我要怎样长大?从而激发学生在成长的路上要努力学习/不怕困难等。6课堂小结最后的小结,我让学生在音乐声中把自己的愿望都写在了卡片上,激励他们去为了自己的理想好好学习,努力奋斗,使歌曲的情感得到了升华。
板块三:拓展延伸,促进内化。 新的教学方法是从塑造人的角度考虑。因此,课堂教学不能只局限于本课知识的教学,而应创设机会,促进知识的内化,拓展学生的思维。正因为深知这一点,本节课我设计了"森林小帮手"这一拓展练习,让学生带着成功的探索经验去思考并解决更多复杂标准的分类。这一活动既加深了学生对各类物体的认识,又培养了学生动手操作的能力,拓展了学生的思维,内化了所学知识,美化了学生的心灵和情感。还培养了学生合作创新的能力,起到一石三鸟的效果。板块四:作业延伸,还原于生活。"数学来源于生活,而又应该为生活服务。"这是《数学课程标准》强调指出的。基于本节课的内容,我设计了以下的课外作业:1、请小朋友利用今天学到的本领做一次小管家,把自己的书包、书柜、衣柜事理好。2、请同学们设想一下,如果你是当地的某大超市、商场的设计家或管理人员,你将怎么摆放物品和划分商场呢?
一年级学生是7-8岁的儿童,思维活跃,课堂上喜欢表现自己,在学习中随意性非常明显,渴望得到教师或同学的赞许。“比大小”这一内容的教学是在学生已经初步会认、读、写5以内各数的基础上教学的。充分利用学生的生活经验,引导学生用1-5各数来表示物体的个数,还要引导学生通过观察、比较、操作等实践活动,增加感性认识,初步接触集合、对应、统计等数学思想。相信本节课内容的教学,学生掌握并不会感到十分的困难。 说教学策略:结合本班的学情,为了突出学生的主体地位,在教学中让学生积极动手、动眼、动脑、动口,引导学生通过自己的学习,体验知识的形成过程,积极开展本节课的教学活动。为更好地突出重点,突破难点,我准备采用以下教学方法。一、创设情境,调动学生的生活经验,引起学习兴趣。使学生好学。二、动手实践,探索新知。调动学生学习的积极性,使学生会学,在学习过程中有意培养学生主动探索的能力。
说教学内容:可能性的大小(人教版三年级上册P106~108例3、例4、例5)说教学目标:1、知识技能目标:使学生进一步体验不确定事件,知道事件发生的可能性是有大小的。2、过程方法目标:经历事件发生的可能性大小的探索过程,初步感受随机现象的统计规律性;在活动交流中培养合作学习的意识和能力。3、情感态度价值观目标:感受数学就在自己身边,体会数学学习与现实的联系;进一步培养学生求实态度和科学精神。说教学重难点教学重点:学生通过试验操作、分析推理知道事件发生的可能性有大有小。教学难点:利用事件发生的可能性的知识解决实际问题。说教学过程:一、感受可能性的大小。1.出示问题:(1)谈话引入:通过前面的学习,我们已经知道了在生活中,有的事情可能发生,有的事情是不可能发生的,今天我们进一步研究可能性的问题。
在课改进行得如火如荼的今天,新课程如一股春风吹进了我们的校园,走进了每一位师生的生活。我校从去年秋季开始选用了人教版的《义务教育课程标准实验教科书》,一年多来,我们不断更新教学理念,刻苦学习、大胆创新,探索了一些适合本地教学实际的有益途径,本节课是义务教育课程标准实验教科书一年级上册的内容,在学生已经学习了8和9 的加减法后进行教学的。学好本节课将为今后学习文字应用题打下坚实的基础。在教学过程中我将教材做了一些小小的改动,根据优化课堂教学的需要对教材进行了再加工,旨在因地制宜,使学生进一步掌握加减法的意义和10以内加减法的计算方法。提高学生运用所学知识解决实际问题的能力。让学生在学习中受到热爱自然、保护环境的教育,同时在教学中培养他们的合作意识和创新精神。
三、说教学理念:通过观察、猜测及动手操作实验等方法,向学生渗透有序的数学思想。四、说教学过程:一、创设情境、激趣导入。小朋友们喜欢什么样的球类运动呢?让学生各抒已见。当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。二.动手实践,自主探究1.2002年世界杯足球C组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。2.如果这四个队每两个队踢一场球,一共要踢多少场?(课件演示主题图)3.让学生大胆说一说、猜一猜。4.四人小组用学具卡片摆一摆、讨论讨论。
已知一水坝的横断面是梯形ABCD,下底BC长14m,斜坡AB的坡度为3∶3,另一腰CD与下底的夹角为45°,且长为46m,求它的上底的长(精确到0.1m,参考数据:2≈1.414,3≈1.732).解析:过点A作AE⊥BC于E,过点D作DF⊥BC于F,根据已知条件求出AE=DF的值,再根据坡度求出BE,最后根据EF=BC-BE-FC求出AD.解:过点A作AE⊥BC,过点D作DF⊥BC,垂足分别为E、F.∵CD与BC的夹角为45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度为3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的长约为3.1m.方法总结:考查对坡度的理解及梯形的性质的掌握情况.解决问题的关键是添加辅助线构造直角三角形.