我从认字起,爸爸就给我买书刊,我关注的第一本文学书是爸爸在阅读的《红岩》,当时书名上的字我还识不全,就念成了“红山石”,别人都笑了,而爸爸微笑着说:“她聪明,大概的意思并没有错。”
是那不定的风把那无人采撷的种子撒落到海角天涯。当它们不能再找到泥土,它们便把最后一线生的希望寄托在这石缝里。尽管它们也能从阳光中分享到温暖,从雨水里得到湿润,而唯一那一切生命赖以生存的土壤却要自己去寻找。它们面对着的现实该是多么严峻。
陈胜者,阳城人也,字涉。吴广者,阳夏人也,字叔。陈涉少时,尝与人佣耕,辍耕之垄上,怅恨久之,曰:“苟富贵,无相忘。”佣者笑而应曰:“若为佣耕,何富贵也?”
水陆草木之花,可爱者甚蕃。晋陶渊明独爱菊。自李唐来,世人盛爱牡丹。予独爱莲之出淤泥而不染,濯清涟而不妖;中通外直,不蔓不枝;香远益清,亭亭净植,可远观而不可亵玩焉。
伯牙善鼓琴,钟子期善听。伯牙鼓琴,志①在高山,钟子期曰:“善哉,峨峨②兮若泰山!”志在流水,钟子期曰:“善哉,洋洋③兮若江河!”伯牙所念,钟子期必得之。
柯尔比找到了全是最著名的音乐辅导老师玛丽,玛丽老师感动地说:“我去,我去!”⑧在玛丽老师娴熟的指导下,孩子们每天练习唱歌,当然是在伊丽莎白接受治疗的时候。
女儿没有见过她妈妈,在她出生的那一刻,她的妈妈便因为难产离开了我们。仿佛一切都有预感一样,在妻子的日记里,我看到了她写给自己未出生孩子的信。
金风换成了北风,秋去冬来了。冬天刚刚冒了个头,落了一场初雪,我满庭斗艳争娇的芳菲,顿然失色,鲜红的老来娇,还有各色的傲霜菊花,一夜全白了头。两棵丁香,叶子簌簌辞柯了,像一声声年华消失的感叹。
我走过湖畔山林间的小路,山林中和小路上只有我;林鸟尚未归巢,松涛也因无风而暂时息怒……突然间听到自己的身后有脚步声,这声音不紧不慢,亦步亦趋,紧紧地跟随着我。我暗自吃惊,害怕在荒无人烟的丛林间碰上了剪径。回过头来一看:什么也没有,那声音来自于自己的脚步。
当我见到毕业生名册上你们的名字时,我为你们每一位(甲),我(乙)你们离校后,都能过“不负此生”的生活。首先,我希望你们能简朴地生活。容我提醒各位一句:快乐与金钱和物质的丰盛并无必然联系。一个温馨的家、简单的衣着、健康的饮食,就是乐之所在。漫无止境地追求奢华,远不如简朴生活那样能带给你幸福和快乐。其次,我希望你们能过高尚的生活。我们的社会有很多阴暗面:不公、剥削、诈骗等等。我吁请大家,务必要庄敬自强,公平待人,不可欺侮弱势的人,也不可做损人或损己的亊。高尚的生活是对一己的良知无悔,维护正义,亊亊均以道德为依归。这样高尚地生活,你们必有所得。
在收藏成为时尚的今天,年画也以其浓郁的装饰性和观赏性,成为收藏者们趋之若鹜的热门藏品。在我国传统年画中,以下五类最值得收藏:一为神像,以门神最为常见,还有财神、灶王、关王、八仙等;二为吉祥图案,如状元及第、吉庆有余、连生贵子、群仙祝寿等;三为历史人物及故事,如桃园结义、文姬归汉、昭君出塞、穆桂英挂帅等;四为戏曲故事,如《三国演义》中的空城计、群英会,《西厢记》中的红娘传书、花园相会等;五为市井风俗,如春游图、赛龙舟、摇钱树、聚宝盆、老鼠娶亲、鲤鱼跃龙门等。这些年画题材丰富,画面或质朴可爱或精致生动,或粗犷豪放或雍容典雅,彰显着我国民间传统文化的博大精深。
(一)结构不够优。一是年龄结构不合理,编内人员(公务员和事业编制人员)年龄在*周岁以下的只有*人,占编内人员*%。二是学历偏低,学历为全日制大专及以下的有*人,占*%,硕士研究生只有*人;三是专业化水平不高,具有专业技术职称的只有*人,占比*%,其中工程师职称只有*人,难以适应专业化、高质量工作的需求。作为中坚力量的*名中层干部中,大专及以下学历占*%,专业型干部不足*%,编外人员占一半以上。
知识与技能目标:1. 能正确说出三元一次方程(组)及其解的概念,能正确判别一组数是否是三元一次方程(组)的解;2. 会根据实际问题列出简单的三元一次方程或三元一次方程组。过程与方法目标:1. 通过加深对概念的理解,提高对“元”和“次”的认识。2. 能够逐步培养类比分析和归纳概括的能力,了解辩证统一的思想。情感态度与价值观目标:通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识。
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
②.通过“由文字语言到符号语言”再“由符号语言到文字语言”让学生从正反两方面双向建构.突破难点策略:①.分三步分散难点:引入时大量的实际情景,让学生体会到代数式存在的普遍性;让学生给自己构造的一些简单代数式赋予实际意义,进一步体会代数式的模型思想;通过“主题研究”等环节进一步提高解决实际问题的能力.②.适时安排小组合作与交流,使学生在倾听、质疑、说服、推广的过程中得到“同化”和“顺应”,直至豁然开朗,突破思维的瓶颈.2.生成预设为生成服务,本案编代数式、主题研究等环节的设计为学生精彩的生成提供了很好的平台,在实际教学过程中,教师要注重生成信息的捕捉,善于发现学生思维的亮点,及时进行引导和激励,并根据具体教学对象,适当调整教与学,使教学过程真正成为生成教育智慧和增强实践能力的过程.让预设与生成齐飞.
方法总结:(1)若被开方数中含有负因数,则应先化成正因数,如(3)题.(2)将二次根式尽量化简,使被开方数(式)中不含能开得尽方的因数(因式),即化为最简二次根式(后面学到).探究点三:最简二次根式在二次根式8a,c9,a2+b2,a2中,最简二次根式共有()A.1个 B.2个C.3个 D.4个解析:8a中有因数4;c9中有分母9;a3中有因式a2.故最简二次根式只有a2+b2.故选A.方法总结:只需检验被开方数是否还有分母,是否还有能开得尽方的因数或因式.三、板书设计二次根式定义形如a(a≥0)的式子有意义的条件:a≥0性质:(a)2=a(a≥0),a2=a(a≥0)最简二次根式本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系,加深学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否确认结果的合理性等等.
属于此类问题一般有以下三种情况①具体数字,此时化简的条件已暗中给定,②恒为非负值或根据题中的隐含条件,如(1)小题。③给出明确的条件,如(2)小题。第二类,需讨论后再化简。当题目中给定的条件不能判定绝对值符号内代数式值的符号时,则需讨论后化简,如(4)小题。例3.已知a+b=-6,ab=5,求 的值。解:∵ab=5>0,∴a,b同号,又∵a+b=-6<0,∴a<0,b<0∴ .说明:此题中的隐含条件a<0,b<0不能忽视。否则会出现错误。例4.化简: 解:原式=|x-6|-|1+2x|+|x+5|令x-6=0,得x=6,令1+2x=0,得 ,令x+5=0,得x=-5.这样x=6, ,x=-5,把数轴分成四段(四个区间)在这五段里分别讨论如下:当x≥6时,原式=(x-6)-(1+2x)+(x+5)=-2.当 时,原式=-(x-6)-(1+2x)+(x+5)=-2x+10.当 时,原式=-(x-6)-[-(1+2x)]+(x+5)=2x+12.当x<-5时,原式=-(x-6)+(1+2x)-(x+5)=2.说明:利用公式 ,如果绝对值符号里面的代数式的值的符号无法决定,则需要讨论。方法是:令每一个绝对值内的代数式为零,求出对应的“零点”,再用这些“零点”把数轴分成若干个区间,再在每个区间内进行化简。