《0的认识和有关0的加减法》是《数学(人教版义务教育课程标准实验教科书)》一年级上册第29页的教学内容。数字0在生活中应用广泛,不同的应用体现出0的不同含义,有关0的加减法也具有其独特的规律和特点。本节课教学目标有下:1.通过游戏、活动,使学生理解0的含义,会读、会写数字0,了解数的顺序。2.使学生在情境体验中理解有关0的加、减法的含义,并能熟练计算。3.通过在数学活动中的观察、思考、讨论、探索,提高学生自主学习的意识和发现简单规律的能力。4.培养学生的想像力、语言表达能力和初步的推理应用能力。教学实录与评析:一、活动中认识0──关于0的含义和书写1.排排队──复习数的顺序。师:这节课,数字王国有几位小客人要到咱们教室找朋友。他们来了。(敲门声)
活动目标: 帮助复习巩固5,6,7,三个数,引导幼儿能够不受物体大小,形状和排列形式的影响正确感知和判断7以内的数。 活动准备: 自制多媒体课件活动过程:1、小猴摘水果 (1)小猴家里有一个果园,他种的水果都成熟了,小猴想请小朋友一起到他的果园里去参观,看一看果园里有些什么水果呢?(打开电脑屏幕) (2)果园上有几个菠萝?苹果树上有几个苹果?柿子树上有几个柿子?
4、学习有关0的加减法我为学生创设一个丰富的问题情境,鼓励学生大胆发表自己的意见并进行交流,在情景中亲身体验关于0的加减法计算及在生活中的应用。用3只小鸟飞走了的情景图,教学得数是0的减法的意义;通过两片荷叶上的青蛙图,教学有关0的加法。出示图画,让学生仔细观察,互相交流说说看懂了什么,并根据图意列出算式,理解算式所表示的意思,,集体交流不同想法然后举出生活中这样的例子。在这一环节的教学中,我充分利用教材资源,将原来教材中静态的图动态化,让学生在生动、有趣的情境中学习数学。然后,创设情境,用所学来的知识帮助学习伙伴解决难题,激发学生强烈的探究,解疑的欲望。最后,通过学习过程中所列出的算式,让学生自己总结、归纳出有关0的加减法算式的规律,体验成功的乐趣。
(三)联系生活实际,学会运用数 在学生认识了1—5各数以后,设计游戏,让学生在自己身上,教室里,家里找一找,数一数,并用学过的数说一句话. 这样就让学生把生活实际与数学较好的联系起来,学会在生活中运用数学解决问题. (四)动手操作圆片,学会比较数的大小 1,认识数的意义以后,让学生自己摆圆片,摆一摆,比一比,哪个数大,你是怎么想的 渗透了自然数的计算单位和相邻两个自然数相差1. 2,认识数的大小以后,进行猜数游戏,如5的前面是几 3的后面是几 还有可能是几 通过反复练习,学生较好的掌握了数的大小比较这一知识点. 3,最后学习写数.写数是本堂课的另一个重点,教师要培养学生良好的写字习惯.学生对1——5各数早已很熟悉了,主要是引导学生规矩,工整的写数.这一教学环节就要充分利用电脑软件的直观性,清楚的显示1——5各数运笔的轨迹,先让学生观察,感知,再通过描红,独立书写达到预期的效果.
教材分析义务教育课程标准实验教科书数学(人教版)一年级上册,把8和9的认识放在同一节课中完成,编排与前面6和7的认识基本上一样,只是要求更高。教材中提供给学生数数的资源虽不如6和7明显,却更丰富。提供给学生数数的对象是以“热爱自然,保护环境”为主题的生动画面,其内容有人、花、树、花盆、蝴蝶、黑板上的字等。画面除数数外,还体现了环保教育的主题。8和9的序数意义仍是采取6和7的编排方法,不同的是让学生更具体地感受几和第几的意义的不同。学生分析班上学生对数学学习的兴趣浓厚,敢想、敢说、敢问,思维活跃。低年级学生好奇心强,渴望动手参与的愿望强烈,为了让学生主动参与到学习过程中来,我根据一年级学生的心理特点,在学习6和7的认识时,我就尝试让学生课前收集了一些生活中的6和7,并制成剪贴图。没想到学生的信息量还挺大,制成的剪贴图也很生动、活泼。但在认识6和7的序数意义时,有一些不足,有一部分学生对几和第几的概念还有些模糊。
新《课程标准》中指出:“数学教学是数学活动的教学,是师生之间、生生之间交往互动与共同发展的过程,数学教学应从学生的实际出发,创设有助于学生学习的问题情境,引导学生思考、探索、交流、获得知识,形成技能,发展思维,学会学习,促使学生在教师指导下主动地、富有个性地学习。”整节课以动画人物情境贯穿于始终,充分调动学生学习的积极性和主动性,来完成本课的教学任务。上课伊始我播放一首学生熟悉的动画片《虹猫蓝兔七侠传》的片头曲《人生不过一百年》,创设教学情境,贴近学生的生活,自然引出7个动画人物。不仅复习了1—5,而且顺利引出新课。接下来的探究新知阶段,继续以为七剑合壁解决困难为情境线索,将新知自然呈现在学生的面前,使学生通过自主、合作探究的学习方式,完成6和7的数数、认数、数序、比较大小、序数意义以及书写的学习。
1、多媒体情境:林可看大家准备得很辛苦,便从家里带了10瓶饮料要个伙伴们喝,可是一个袋子装不完,想分为两个袋子装,她可能会怎样装呢?2、用学具代替饮料,亲自动手摆一摆。并说一说你是怎么分的?3、汇报不同的分法。(结合汇报情况,多媒体演示10的组成)4、同桌交流:用什么方法记住10的组成?5、游戏:师生互动老师说一个数,学生说一个数,两个数组成10。生生互动说数并出手指,两个同学出的手指合起来是10。(从创设情境,学生动手操作,同桌交流,都体现了使学生成为学习的主人,这是小学数学课堂教学模式改革的方向。允许学生用自己已有的数的分成经验,用不同的方法去学习,使不同的学生在学习上得到不同的发展,体现了因材施教的过程。并在游戏中化抽象为具体,化枯燥为愉悦,实现学生在轻松快乐的氛围中深化感知。)
让学生再用计算器计算,然后让学生谈谈遇到的问题(计算器已经不能把这些数显示出来了)。最后让学生根据上面的计算结果,找出规律,再直接写出后四题的得数,并组织学生交流,要求学生说说自己的思考过程及依据,确认发现的规律,让学生进一步体会计算器的作用:计算器还可以帮助我们探索规律。(设计意图:设计不同层次的练习,使学生体验计算器的有用性,提高学生解决问题的能力,培养学生辨证思维能力)四、最后进行全课总结。整个活动,老师创设情境,启发诱导,设疑激趣,学生自主探索,动手操作,积极思考,讨论交流,给学生提供了充分的数学活动机会,充分发挥了学生的主体作用,使学生不仅掌握了知识,发展了能力,同时又体验了数学问题的探索性与创造性,以及成功的喜悦,学生学得轻松,学得主动,学有创造,学有发展
此图是一个复式折线统计图,考察内容是根据统计图,进行数据的有效分析。(1)因为统计图中蓝色的折线表示学龄儿童,根据对学龄儿童的折线数据分析发现:1980年的学龄儿童最多,2000年的学龄儿童最少。(2)根据题目要求的分析:没上学的学龄儿童实际上是指:学龄儿童的人数与实际入学儿童人数的差。通过仔细观察统计图,可以直观地发现:1980年的学龄儿童和入学人数之间的差值最大,2000年的学龄儿童和入学人数之间的差值最小。所以,1980年没上学的学龄儿童最多,2000年的最少。(3)这一问比较开放,只要合理即可。三、练习二十七第9——14题解答指导:9. 81cm3=81ml 700dm3=0.7m3 560ml=0.56L 2.3dm3=2300cm310. 根据图示可知:把铁皮做成一个长方体,长方体的长为30—5×2=20(cm),宽为25—5×2=15(cm),高也就是切去的正方形的边长5cm。(1)求“这个盒子用了多少铁皮?”也就是求这个铁皮盒子(无盖)的表面积。
解:设另一个因式为2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一个因式为2x2+x-3.方法总结:因为整式的乘法和分解因式互为逆运算,所以分解因式后的两个因式的乘积一定等于原来的多项式.三、板书设计1.因式分解的概念把一个多项式转化成几个整式的积的形式,这种变形叫做因式分解.2.因式分解与整式乘法的关系因式分解是整式乘法的逆运算.本课是通过对比整式乘法的学习,引导学生探究因式分解和整式乘法的联系,通过对比学习加深对新知识的理解.教学时采用新课探究的形式,鼓励学生参与到课堂教学中,以兴趣带动学习,提高课堂学习效率.
探究点三:作中心对称图形如图,网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形;(2)将(1)中画出的图形与原图形看成一个整体图形,请写出这个整体图形对称轴的条数;这个整体图形至少旋转多少度能与自身重合?解:(1)如图所示;(2)这个整体图形的对称轴有4条;此图形最少旋转90°能与自身重合.三、板书设计1.中心对称如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.2.中心对称图形把一个图形绕着某一点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.教学过程中,强调学生自主探索和合作交流,结合图形,多观察,多归纳,体会识别中心对称图形的方法,理解中心对称图形的特征.
解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元.列出不等式20x+55≥350.故选B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.三、板书设计1.不等式的概念2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示;(2)正确理解题目中的关键词语的确切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来;(4)要正确理解常见不等式基本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.
解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法总结:本题是线段垂直平分线的性质和角平分线的性质的综合,掌握它们的适用条件和表示方法是解题的关键.三、板书设计1.角平分线的性质定理角平分线上的点到这个角的两边的距离相等.2.角平分线的判定定理在一个角的内部,到角的两边距离相等的点在这个角的平分线上.本节课由于采用了动手操作以及讨论交流等教学方法,从而有效地增强了学生对角以及角平分线的性质的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生在性质的运用上还存在问题,需要在今后的教学与作业中进一步的加强巩固和训练.
答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.
二、说教学目标知识和技能:能结合生活情景辨认锐角和钝角,能口述锐角和钝角的特征。 过程和方法:通过观察、操作、分类、比较等数学教学活动,培养学生的动手能力,合作意识,激发学生的创新思维。在对简单物体和图形的形状的探索过程中,发展空间观念。情感、态度、价值观:通过实践,使学生获得成功的体验,建立自信心。通过生活情境的创设,感受生活中处处有数学,培养学习数学的兴趣。教学重点:能辨认锐角、钝角。知道锐角、钝角的特征。教学难点:能辨认锐角、钝角。三、说教法、学法这一节课的教学对象是二年级的学生。他们年龄小、好动、爱玩、好奇心强,在四十分钟的教学中容易疲劳,注意力容易分散。根据这一特点,为了抓住他们的兴趣,激发他们的好奇心,我采用了愉快式教学方法为主,创设情境,设计了生动有趣的简笔画,让学生在图所创设的情境中学习。同时我还采用了动像发现教学法,让孩子们通过合作交流去发现角和展示角,这样既活跃了学生的思想,激发了认知兴趣,而且充分发挥学生的学习积极性。
【类型四】 含整数指数幂、零指数幂与绝对值的混合运算计算:-22+(-12)-2+(2015-π)0-|2-π2|.解析:分别根据有理数的乘方、零指数幂、负整数指数幂及绝对值的性质计算出各数,再根据实数的运算法则进行计算.解:-22+(-12)-2+(2015-π)0-|2-π2|=-4+4+1-2+π2=π2-1.方法总结:熟练掌握有理数的乘方、零指数幂、负整数指数幂及绝对值的性质是解答此题的关键.三、板书设计1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减.2.零次幂:任何一个不等于零的数的零次幂都等于1.即a0=1(a≠0).3.负整数次幂:任何一个不等于零的数的-p(p是正整数)次幂,等于这个数p次幂的倒数.即a-p=1ap(a≠0,p是正整数).从计算具体问题中的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.教学时要多举几个例子,让学生从中总结出规律,体验自主探究的乐趣和数学学习的魅力,为以后的学习奠定基础
问题:2015年9月24日,美国国家航空航天局(下简称:NASA)对外宣称将有重大发现宣布,可能发现除地球外适合人类居住的星球,一时间引起了人们的广泛关注.早在2014年,NASA就发现一颗行星,这颗行星是第一颗在太阳系外恒星旁发现的适居带内、半径与地球相若的系外行星,这颗行星环绕红矮星开普勒186,距离地球492光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.问题:“10×105×107×102”等于多少呢?二、合作探究探究点:同底数幂的乘法【类型一】 底数为单项式的同底数幂的乘法计算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.
序数是用来表示集合中元素排列次序的数,是用自然数表示事物排列的次序,如:排队、乘车、着电影的座位都是序数的内容。中班幼儿认知活动的具体形象性和行为的有意性明显发展,能依靠表象进行思维,认知活动的概括性使幼儿对事物的理解增强,感受和发现周围环境中物体数量间的差异、物体的形状、以及它们的空间的位置等。本次活动以幼儿喜欢的动物为主题,在游戏中愉快地学习7以内的序数。并通过自身的操作,初步感知开始的方向发生变化,物体排列位置也随之变化的现象。让幼儿在看一看、说一说、玩一玩、摆一摆中理解序数的含义。
结合目标,我将通过四个环节实施活动:环节一:情景导入,引起幼儿的兴趣。兴趣是主动参与的关键,教师以情景的方式导入“新年快到了,图形宝宝们要进行大联欢活动,我们一起看看都有哪些图形?”对不同的图形进行巩固认识,为后面的图形创意做准备。环节二:分组操作“按数取图形”进行创意,并交流讨论,感知数量守恒。这一环节中我又分了两个小环节进行活动:一是通过幼儿分组操作“按数取图形”进行创意,一组是图形相同颜色不同;一组是图形相同,大小、颜色不同;一组是大小、颜色、形状都不同;请幼儿按各组数卡取相应数量的图形进行创意,不仅体现了数学领域的内容,从中也渗透了艺术领域的内容。二是作品展示,交流讨论,感知数量守恒。将幼儿的作品分组进行展示,请幼儿分组介绍,“你用什么图形进行创意的?你们拼的什么?这些图形有什么不同?数量相同吗?”等等,再出示数卡,依次介绍,从而了解物品不受颜色、形状、大小以及空间排列形式的影响,正确感知6以内的数量。