教学效果:部分学生能举一反三,较好地掌握分式方程及其应用题的有关知识与解决生活中的实际问题等基本技能.第六环节 课后练习四、教学反思数学来源于生活,并应用于生活,让学生用数学的眼光观察生活,除了用所学的数学知识解决一些生活问题外,还可以从数学的角度来解释生活中的一些现象,面向生活是学生发展的“源头活水”.在解决实际生活问题的实例选择上,我们尽量选择学生熟悉的实例,如:学生身边的事,购物,农业,工业等方面,让学生真切地理解数学来源于生活这一事实。有些学生对应用题有一种心有余悸的感觉,其关键是面对应用题不知怎样分析、怎样找到等量关系。在教学中,如果采用列表的方法可帮助学生审题、找到等量关系,从而学会分析问题。可能学生最初并不适应这种做法,可采用分步走的方法,首先,让学生从一些简单、类似的问题中模仿老师的分析方法,然后在练习中让学生悟出解决问题的窍门,学会举一反三,最后达到能独立解决问题的目的。
⑴、理解小数乘法交换律、结合律和分配律的意义,能运用运算定律进行小数的计算简便。⑵、经历发现归纳小数乘法交换律、结合律、分配律的全过程。学习“猜测—验证”的科学思维方式,提高类比、分析、概括的能力。⑶、在合作交流的学习活动中,提高人际交往能力。4、教学重点、难点从猜测—验证中归纳乘法交换律、结合律和分配律。二、教法和学法1、充分发挥学生的主体作用,在教学中注意让学生自主探索、发现规律、理解规律,通过猜测—验证,引导启发学生发现规律。引导学生积极、主动地参与到知识的形成过程中去。2、自始至终注意培养学生观察、比较、抽象概括能力,教给学生观察、比较、抽象概括的方法。在教学中不仅引导学生有序地观察比较,还充分运用小组合作讨论的手段,进行小组合作讨论,各抒己见,取长补短,在观察到的感性材料的基础上加以抽象概括,形成结论。
《较复杂的小数乘法》是第九册第一单元《小数的乘法和除法》的第三节。本 节课的教学内容是教科书第3页的例3、例4。这一教材是在学生学习了小数乘法的意义(小数乘以整数、一个数乘以小数)、小数乘法的计算法则以及小数点位置 移动引起小数大小的变化的基础上进行教学的,它是小数乘法计算法则的引伸和补充,同时也是学生今后进一步学习小数四则混合运算的基础。本节课 的教学目的是:1、使学生进一步掌握小数乘法的计算法则,懂得在点积的小数点时,乘得的积的小数位数不够的,要在前面用0补足;2、使学生初步掌握“当乘 数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大”;3、培养学生的计算能力,自学能力和概括能力。本节课的教学重点是:让学生掌握在定积的小数 时,位数不够的会用0补足。
在学习本课内容以前,学生已经系统地学习了整数四则混合运算和小数四则计算,为本节课内容的学习打下了基础,由于小数四则混合运算的运算顺序同整数四则混合运算的运算顺序完全一样,针对这一点,本课教学确定的教学目的是使学生熟记小数四则混合运算顺序,提高计算能力。使学生熟练地掌握小数四则混合运算的运算顺序,正确、迅速地进行小数四则混合式题的运算,是本课的教学重点。教学难点是:1.能否正确把握运算顺序。2.能否正确标明根据以上教学目的,为了更好地突出重点,突破难点,在教学中遵循大纲的要求,从简单入手。例1是最简单的两步计算题,让学生熟悉一下运算顺序。再过渡到较复杂的问题。例2是三步计算带小括号的较复杂的四则混算题,在运算过程中出现了除不尽的情况,应说明计算过程中,当除得的商超过两位小数时,一般只需保留两位小数,再进行计算。最后进入到教学重点、难点阶段。
第三个层次,是通过师生互动,以身份证号码为例,初步了解蕴含的一些简单信息和编码的含义;通过小组对自己带来的身份证号码进行观察、比较、猜测来探索数字编码的简单方法;通过连线、判断等初步应用,进一步巩固数字编码的简单方法。第四个层次,是通过学生互动交流自己的学号,初步体验编码的过程。在整个教学中,教师不束缚学生的手脚,而让学生充分谈论他所调查、了解到的每一个信息,为学生的发展提供充分的土壤和水分,让他们自己发挥想象:“从身份证号码中你能获得哪些信息呢?”“你能给自己编一个学号吗?”问题逐层递进,使学生思维上台阶,也使不同层次学生得到不同的发展,营造一个培养学生创新思维的空间。这样做可以使学生真正成为知识的探索者、发现者和创造者,从而使学生保持一种经久不衰的探究心理,形成勇于探索、勇于创新的科学精神,是促使学生可持续发展的一种教学活动。
一、创设情境,引入新课。课开始,首先通过谈话问学生“你们喜欢玩游戏吗?”随后呈现例题的情境图,让学生在观察中清楚的知道袋中有4个红球和2个红球。然后教师揭示摸球游戏的规则:每次任意摸一个球,摸好后放回袋中,一共摸30次。摸到红球的次数多算小明赢;摸到黄球的次数多算小玲赢。接着让学生猜一猜谁赢得可能性大一些。预设学生都会猜是小明赢得可能性大一些。然后组织学生在小组里进行摸球实验,并把摸的结果记录在书本例题的第一个记录表中,验证刚才的猜想。在学生操作完之后,让学生明确小明赢得可能性大一些。接着引导学生产生质疑:“这样的游戏公平吗?为什么?”引导学生小结:口袋中红球的个数比较多,所以每次任意摸一个球,摸到红球的可能性要大,最后小明赢得可能性也就相应地要大一些,这样摸球的游戏规则是不公平的。在此基础上揭示课题并板书:游戏规则的公平性。
二、探究交流,引导概括 —— 方程为了培养学生的发现和抽象概括能力,同时进一步理解方程的意义,我让学生分组学习,引导他们先找出②20+χ=100,⑥ 3χ=180,⑧100+2χ=3×50像上面三臄等式的有共同特征,然后归纳概括什么叫做方程?最后得出:像这样的含有未知数的等式,叫做方程。三、讨论比较,辨析、概念 —— 等式与方程的关系为了体现学生的主体性,培养学生的合作意识,同时让学生在解决问题的过程中得到创造的乐趣。通过四人合作用自己的方法创作 “ 方程 ” 与 “ 等式 ” 的关系图,并用自己的话说一说 “ 等式 ” 与 “ 方程 ” 的关系:方程一定是等式,但等式不一定是方程。四、巩固深化,拓展思维 —— 练习1 、“做一做”:2、判断是否方程3、“方程一定是等式,等式也一定是方程”这句话对吗?4、叫学生用图来表示等式和方程的关系。
一、说教材:稍复杂的方程的教学任务例1教学解方程ax±b=c及其应用(列方程解形如ax±b=c的问题)(1)把解方程和用方程解决问题有机结合,在解决问题的过程中解较复杂的方程。(2)结合现实素材(足球上两种颜色皮的块数)引出,这种问题用算术方法解决思考起来比较麻烦。(3解方程的过程其实是由解若干基本方程构成的(y-20=4,2x=24),需要强调把2x看成一个整体。(4)可以列出不同的方程,如2x-4=20,关键是使学生理解数量关系。二、说学生:学生在前面已经学习了简单的方程数量关系,及简单方程式的解法,而且我在前面的教学中已经笨鸟先飞,让学生接触了形如:ax±b=c的方程式。三、说教法:根据学生的实际情况,我准备在教学过程中,重点讲解稍复杂方程式的数量关系式的分析研究,让学生根据应用题的题意列出正确的数量关系式。
1.数字编码越来越重要,了解编码的含义,会给人们的生活、工作带来很多的便利。公安机关常常利用一些编码侦破案件。请同学们看个短片,仔细观察,你能找出对破案有用的线索并说出理由吗?生答。是的,公安人员根据这些线索很快将犯罪嫌疑人抓获。2.运用数字或符合来描述事物可以更简洁准确。看到这个号码不用知道名字就能找到这个人。首先请同学们仔细想一想,号码中要体现哪些方面的内容?先自己想再到小组中交流,组长记录下讨论的结果。生讨论结束后师实物出示结果,追问:①其他小组还有什么不同意见吗?集体讨论得出结果:编入入学时间、班级序号、班级学号、性别等。追问:②按什么顺序编排比较合理呢?生讨论得出按入学时间、班级序号、班级学号、性别的顺序。其次学生给自己编号码,师实物出示提问:看到这个号码,你能找到这个人吗?生根据号码找到这个人。
④联系生活实际解决身边的问题,让同学初步感受数学与日常生活的密切联系,体验数学的应用,促进学生的发展。接下来,我再具体谈一谈这堂课的教学过程。3、说教学过程第一环节:创设情境,激qing导入。同学们你们看屏幕上的是什么?(出示图片)那么自行车车轮是什么形状的?为什么车轮要设计成圆形?这里面有什么奥妙呢?学了今天的内容大家就会明白的。这节课我们就走进圆的世界去探寻其中的奥妙。板书课题:圆的认识设计意图:通过生活中实际例子引入课题,一方面引起学生的学习兴趣,另一方面为学习新知识做了铺垫,从思想上吸引了学生主动参与学习的活动。这一环节的设计,主要是想体现数学就在我们的身边,从而激发学生学习的兴趣及学习的积极性。
《比的化简》是北师大版六年级上册第52——53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。在这之前,学生早已学过“商不变的性质”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。二、说教学目标:知识与能力:会运用商不变的性质或分数的基本性质化简比。过程与方法:在实际情境中,让学生体会化简比的必要性,在观察、比较中理解什么是化简比,,并能解决一些简单的实际问题。情感、态度与价值观:促进知识迁移,培养学生的概括能力。体验知识的相通性以及数学与生活的联系。
接下来引导学生分析题中数量关系:题目要分配什么?按照什么分配?重点思考讨论:从3:2这个比中,你能知道什么?接下来鼓励小组合作尝试多种方法解答,重点理解按比分配的方法。2、小结:按比分配的应用题有什么结构特点?怎样解答这样的应用题?这样设计为学生提供自主探索的空间。所以在教学中可以灵活地依据提出的方法调换教学顺序,并引导学生掌握两种不同的解题方法。安排学生的小组讨论方式能使学生一开始就畅所欲言,把几种不同思路比较和联系起来,在理解的基础上才能更好的掌握方法,并注意培养学生的检验能力。第三个环节:多层训练,形成技能。练习是数学课堂教学一个重要环节,我设计的练习题力求做到从易到难,由浅入深,有层次,有坡度,新旧知识融合恰当,形成技能技巧,开拓思维,发展能力,达到练习的预期目的。
解:(1)根据题意,可得y=100025x,化简得y=40x;(2)根据题设可知自变量x的取值范围为0<x<85.方法总结:反比例函数的自变量取值范围是全体非零实数,但在解决实际问题的过程中,自变量的取值范围要根据实际情况来确定.解题过程中应该注意对题意的正确理解.三、板书设计反比例函数概念:一般地,如果两个变量x,y之间 的对应关系可以表示成y=kx(k 为常数,k≠0)的形式,那么称y 是x的反比例函数,反比例函数 的自变量x不能为0确定表达式:待定系数法建立反比例函数的模型结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,从感性认识到理性认识的转化过程,发展学生的思维.利用多媒体创设大量生活情境,让学生体验数学来源于生活实际,并为生活实际服务,让学生感受数学有用,从而培养学生学习数学的兴趣.
2、某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3、y是x的反比例函数,下表给出了x与y的一些值: (1)写出这个反比例函数的表达式;(2)根据表达式完成上表。教师巡视个别辅导,学生完毕教师给予评估肯定。II巩固练习:限时完成课本“随堂练习”1-2题。教师并给予指导。七、总结、提高。(结合板书小结)今天通过生活中的例子,探索学习了反比例函数的概念,我们要掌握反比例函数是针对两种变化量,并且这两个变化的量可以写成 (k为常数,k≠0)同时要注意几点::①常数k≠0;②自变量x不能为零(因为分母为0时,该式没意义);③当 可写为 时注意x的指数为—1。④由定义不难看出,k可以从两个变量相对应 的任意一对对应值的积来求得,只要k确定了,这个函数就确定了。
解析:想要看起来更美,则鞋底到肚脐的长度与身高之比应为黄金比,此题应根据已知条件求出肚脐到脚底的距离,再求高跟鞋的高度.解:设肚脐到脚底的距离为x m,根据题意,得x1.60=0.60,解得x=0.96.设穿上y m高的高跟鞋看起来会更美,则y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她应该穿约为7.5cm高的高跟鞋看起来会更美.易错提醒:要准确理解黄金分割的概念,较长线段的长是全段长的0.618.注意此题中全段长是身高与高跟鞋鞋高之和.三、板书设计黄金分割定义:一般地,点C把线段AB分成两条线段AC 和BC,如果ACAB=BCAC,那么称线段AB被点 C黄金分割黄金分割点:一条线段有两个黄金分割点黄金比:较长线段:原线段=5-12:1 经历黄金分割的引入以及黄金分割点的探究过程,通过问题情境的创设和解决过程,体会黄金分割的文化价值,在应用中进一步理解相关内容,在实际操作、思考、交流等过程中增强学生的实践意识和自信心.感受数学与生活的紧密联系,体会数学的思维方式,增进数学学习的兴趣.
2.如何找一条线段的黄金分割点,以及会画黄金矩形.3.能根据定义判断某一点是否为一条线段的黄金分割点.Ⅳ.课后作业习题4.8Ⅴ.活动与探究要配制一种新农药,需要兑水稀释,兑多少才好呢?太浓太稀都不行.什么比例最合适,要通过试验来确定.如果知道稀释的倍数在1000和2000之间,那么,可以把1000和2000看作线段的两个端点,选择AB的黄金分割点C作为第一个试验点,C点的数值可以算是1000+(2000-1000)×0.618= 1618.试验的结果,如果按1618倍,水兑得过多,稀释效果不理想,可以进行第二次试 验.这次的试验点应该选AC的黄金分割点D,D的位置是1000+(1618-1000)×0.618,约等于1382,如果D点还不理想,可以按黄金分割的方法继续试验下去.如果太浓,可以选DC之间的黄金分割 点 ;如果太稀,可以选AD之间的黄金分割点,用这样的方法,可以较快地找到合适的浓度数据.这种方法叫做“黄金分割法”.用这样的方法进行科学试验,可以用最少的试验次数找到最佳的数据,既节省了时间,也节约了原材料.●板书设计
各位评委:大家好!今天我说课的内容是人教版五年级上册第一单元《小数乘法》的第二课时小数乘小数(一)说教材1、教学内容:P4例3、做一做,P5例4、做一做,P8—9练习一第5—9、13题。2、教学目的:1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。2、比较正确地计算小数乘法,提高计算能力。3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。3、教学重点:小数乘法的计算法则。4、教学难点:小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。(二)说教法和学法本课所用的教学方法有: 讲授法、谈话法、讨论法、练习法。 学法有:自学法,小组合作学习的方法,迁移类推概括法,归纳总结法。
(由除数的小数位决定。因为我们只要把除数转化成整数就成了除数是整数的小数除法。如:0.756÷0.18=75.6÷18。)(设计意图:在试做的基础上引导学生初步感受转化时小数点的移位方法,为自主概括法则作铺垫)2、学习例5:买0.75千克油用10.5元。每千克油的价格是多少元?学生列式:10.5÷0.75。①要把除数0.75变成整数,怎样转化?(把除数0.75扩大100倍转化成75。要使商不变,被除数也应扩大100倍。)②被除数10.5扩大100倍是多少?(10.5扩大100倍是1050,小数部分位数不够在末尾被“0”。)3、比较例4与例5有什么不同?(被除数在移动小数点时,位数不够在末尾用“0”补足。)4、练习:课本P21练一练第2题,学生独立完成后,归纳小结。(设计意图:对被除数小数点移位后补“0”的方法,教师可作适当点拨。学生试做后先不急于讲评,让他们对照教材中的两个例题启发学生观察、比较两道例题的不同点与计算时的注意点。引导学生分析、比较,逐步抽象出移位的方法。)
一、说教材:用字母表示数是人教版小学数学五年级上册第四单元的教学内容。在学习本单元之前,学生已经接触过一些用字母表示运算律,对简单实际问题中的基本数量关系熟悉了,这些都是学生理解本单元所学知识的重要基础。同时本单元知识又是学生进入代数知识学习的入门知识,是学习方程的基础。二、说教学目标和重难点:(一)目标1、理解用字母可以表示数,能用含有字母的式子表示简单的数和运算定律,初步学习用代数符号语言进行表述交流。2、经历把简单的实际问题用含有字母的式子进行表达的抽象过程,发展符号感。3、在解决问题中体会数学与生活的联系,体会代数符号表示实际问题中数量关系的概括性和简洁性,从而进一步感受学习数学的价值。(二)重点难点:理解用字母表示数的含义,能用含有字母的式子表示简单的数量关系。正确地用含有字母的式子表示运算定律。
【类型二】 根据数轴求不等式的解关于x的不等式x-3<3+a2的解集在数轴上表示如图所示,则a的值是()A.-3 B.-12 C.3 D.12解析:化简不等式,得x<9+a2.由数轴上不等式的解集,得9+a=12,解得a=3,故选C.方法总结:本题考查了在数轴上表示不等式的解集,利用不等式的解集得关于a的方程是解题关键.三、板书设计1.不等式的解和解集2.用数轴表示不等式的解集本节课学习不等式的解和解集,利用数轴表示不等式的解,让学生体会到数形结合的思想的应用,能够直观的理解不等式的解和解集的概念,为接下来的学习打下基础.在课堂教学中,要始终以学生为主体,以引导的方式鼓励学生自己探究未知,提高学生的自我学习能力.