尊敬的老师、领导,亲爱的同学们:大家早上好!今天我发言的题目是“珍惜粮食,做勤勉节俭的xx学子”。关于这个题目,我的发言有三点。第一,珍惜粮食,从我做起。“谁知盘中餐,粒粒皆辛苦”告诉了我们粮食来之不易的道理。学校领导很早就倡导全校师生开展“光盘行动”:盘里不剩菜,碗里不剩米。无论对于老师还是学生,这个标准都不能打任何折扣。可是现在,我们仍然可以看到有同学浪费食物的现象,吃不完的米饭随意倒掉,而且很“大方”、不犹豫。试想,我们学校近300名师生就餐,每人每顿少浪费一粒米,这数额积累下来,至少可以让一个饱受饥饿之苦的人解决温饱问题,这样下来,又可以节约资源求得学校更好的发展,何乐而不为呢?都说温饱不忘饥寒,增产不忘节约。我们处在衣食无忧的好时代,学校也处在稳步发展的关键时期,我们要从自身做起,珍惜粮食,杜绝浪费。
尊敬的各位老师 亲爱的各位同学大家早上好!我是来自高二二班的xx,今天我讲话的主题是《如歌五月》五月,芬芳酝酿着心声,花瓣轻舞着韵律。在这个如花如歌如诗如画般精彩的季节,我们终于迎来了一年一度的遂中之春文艺汇演。细细品味遂中之春的节目。有的体现中华上下五千年渊源的文化,有的突出时代的潮流,有的散发着浓浓的民族风情。但是我想,唯一不变的是全体师生对艺术的追求。在每个演员表演的过程中,我们都不难发现—在我们身边有那么多多才多艺的人。动人的乐声,嘹亮的歌声,精彩的街舞,绚丽的民族舞,震撼人心的动漫秀,遂中之春就是一个老师和学生自我展现,尽情发挥的舞台。我从参加活动的每位表演者脸上飞扬的神采和观众席上的阵阵掌声和喝采声中,让我深刻感受到了艺术节作为我们学生生活中亮丽的一道风景线,让我们更深一层的感受了艺术的魅力。三个小时的晚会,它处处洋溢着青春的美,这种美来自生活和我们的心灵。身处其中,感受青春的美好,释放青春的激情。
一、内部分工 办公室工作事务繁杂,每天都需要处理大量的工作,靠一个人一只脑袋很难全部解决。因此,今年等人员到岗到位后,首先要明确责任分工,确保工作无间隙、事事有人抓。办公室人员要能够做到在职责分工范围内大胆负责,主动工作,调动大家的积极性,提高工作效率,保证办公室工作的正常有序开展。要不定时召开办公室全体人员工作会议,明确每个人的岗位责任,工作任务,做到分工明确,责任清晰。在开展工作时要注意与公司主要领导、主管领导沟通,充分把握领导的意图,力求正确完成领导赋予的工作任务。通过在一起工作,办公室全体人员要形成团结干事,气氛融洽,配合默契,互相支持,工作顺心,心情舒畅的良好氛围。
二、文档工作完善公文电子登记制度,和档案管理衔接,做到登记及时,查询方便,保管适当;在收文方面,强化运行时限意识,提高公文流转时效;规范、强化公文审核把关工作,力争做到从办公室出去的公文无明显错误;根据办公室人员分工,加强业务学习,提高文档写作能力。一是要系统地学习有关的理论,打好理论根底;二是要努力扩大知识积累,建立起适合自己的知识结构;三是打破部门和岗位局限,多了解和熟悉公司全局性工作;四是要加强责任心,勤于思考,勤于动笔,在写作实践中提高写作能力。
第一,按照上级要求深化调整基干民兵队伍建设,着重抓好瓯松公路沿线基干民兵队伍建设,抓好高技术含量分队建设、地方专业对口人员队伍建设、专业技术兵队伍建设,以“保畅通就是保胜利”的总体思路做好民兵调整改革。 第二是抓好预备役部队队伍建设。根据去年退伍兵情况和预备役部队的建设情况,把因超龄、外出等在编的预备役人员调出队伍,在把今年退伍兵和预备役部队的实际情况结合起来,重点抓好高炮兵队伍建设,切实做好预备役部队人员调整。
一、制定了临床药学工作制度及年度工作目标 最新临床药师工作计划范文首先制定了《临床药学室各项工作职责与制度》,同时制定了20**年年度工作计划、工作目标,并及时做月工作小结。使之做到工作制度化、运作程序化、职责明确化。 二、加强处方点评与不合理用药处罚力度 临床药师每月抽查住院病历30份及住院电子病历5百多份,对我院医嘱、处方进行处方点评与不合理用药分析,每月点评一次,点评结果及建议反馈给医政科。同时制定了《处方点评制度》、《关于临床合理用药管理规定》等相关制度和规定。
四是聚焦创先争优,实施示范带动。*区税务局团委不断完善工作机制,强化工作力度,紧密结合实际,认真履行引领凝聚青年、组织动员青年、联系服务青年职责。成为*税务系统唯一被命名*—*年度*市“青少年维权岗”的单位,第一税务分局曾获*-*年度*市青年文明号,区局团委获得*年度“*市五四红旗团(工)委”荣誉称号,第一团支部荣获*年度“*市五四红旗团(总)支部”荣誉称号,*名同志荣获“*省优秀共青团员”,*名同志分别荣获“*市优秀共青团干部”“*市优秀共青团员”荣誉称号。团员青年团结合作、积极参与,在*长三角阅读马拉松大赛(*赛区)获得团体一等奖;在全省“举旗帜·送理论”微宣讲竞赛中我局选手代表*市荣获二等奖;在全市“微团课”大赛中我局选手获得了二等奖;在全区“学习二十大青年走在前”演讲比赛中我局选手获得三等奖。
此外,共青团北海市委员会充分发挥12355青少年服务品牌优势,开展生命安全守护、心理健康守护、网络素养提升、法治意识提升、困境群体关爱等“五大行动”,覆盖全市青少年近10万人次;建设青春社区、红领巾校外活动基地等青少年服务阵地近110个,推动各级团组织的工作资源下沉到社区,“校社共育”为未成年人健康成长保驾护航。五、深化改革攻坚,团的组织基础更加牢固五年来,共青团北海市委员会以深化共青团改革为动力,落实全面从严治团方针,让团的组织更加坚强有力,团的事业更加充满活力,团的形象更加清新严实。共青团北海市委员会通过创新组织形态,建成54个青年之家,团在基层的组织触角和工作手臂进一步延伸;扩大团组织有效覆盖,“两新”组织团建加快推进,全市新建非公企业团支部1569个,社会组织团支部473个。
二、教学目标 1、知识目标:了解狼牙山五壮士英勇战斗,坚贞不屈,壮烈牺牲的英雄事迹。 2、能力目标:理解能力、朗读体会能力的培养。 3、德育目标;学习他们爱护群众,英勇杀敌,为了祖国和人民的利益勇于献身的崇高精神。
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.
三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?
(1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:
【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.
探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.
5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?
∴此方程无解.∴两个正方形的面积之和不可能等于12cm2.方法总结:对于生活中的应用题,首先要全面理解题意,然后根据实际问题的要求,确定用哪些数学知识和方法解决,如本题用方程思想和一元二次方程的根的判定方法来解决.三、板书设计列一元二次方程解应用题的一般步骤可以归结为“审,设,列,解,检,答”六个步骤:(1)审:审题要弄清已知量和未知量,问题中的等量关系;(2)设:设未知数,有直接和间接两种设法,因题而异;(3)列:列方程,一般先找出能够表达应用题全部含义的一个相等关系,列代数式表示相等关系中的各个量,即可得到方程;(4)解:求出所列方程的解;(5)检:检验方程的解是否正确,是否保证实际问题有意义;(6)答:根据题意,选择合理的答案.经历列方程解决实际问题的过程,体会一元二次方程是刻画现实世界中数量关系的一个有效数学模型.通过学生创设解决问题的方案,增强学生的数学应用意识和能力.