解析:(1)已知抛物线解析式y=ax2+bx+0.9,选定抛物线上两点E(1,1.4),B(6,0.9),把坐标代入解析式即可得出a、b的值,继而得出抛物线解析式;(2)求出y=1.575时,对应的x的两个值,从而可确定t的取值范围.解:(1)由题意得点E的坐标为(1,1.4),点B的坐标为(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的抛物线的解析式为y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,当y=1.575时,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,则t的取值范围为32<t<92.方法总结:解答本题的关键是注意审题,将实际问题转化为求函数问题,培养自己利用数学知识解答实际问题的能力.三、板书设计二次函数y=ax2+bx+c的图象与性质1.二次函数y=ax2+bx+c的图象与性质2.二次函数y=ax2+bx+c的应用
(3)设点A的坐标为(m,0),则点B的坐标为(12-m,0),点C的坐标为(12-m,-16m2+2m),点D的坐标为(m,-16m2+2m).∴“支撑架”总长AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函数的图象开口向下,∴当m=3米时,“支撑架”的总长有最大值为15米.方法总结:解决本题的关键是根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解.三、板书设计二次函数y=a(x-h)2+k的图象与性质1.二次函数y=a(x-h)2+k的图象与性质2.二次函数y=a(x-h)2+k的图象与y=ax2的图象的关系3.二次函数y=a(x-h)2+k的应用要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和提高学生学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台.充分利用合作交流的形式,能使教师发现学生分析问题、解决问题的独到见解以及思维的误区,以便指导今后的教学.
本节课我设计了四个教学环节 。 环节一:创设情境,激趣导入学生阅读教材第 34 页的绘本《爷爷家的洗脸水》,读完之后交 流感受,教师引导到水很珍贵的话题,由此导入新课,板书课题:小水滴的诉说。设计意图:激发学生的学习兴趣,并引出本节课要学习的内容, 为接下来的学习作好铺垫。环节二:自主探究,合作交流 这一环节我安排了三个活动。 活动一:我很宝贵首先,课件出示教材第 35页的小诗《小水滴的自我介绍》,并 播放画外音,学生说一说对水的认识。然后,学生阅读教材第 34 页和第 35 页的图文,结合课前查找收集到的有关水资源的资料,说说发现了什么?教师相机引导,板书:宝贵稀少。设计意图:了解水与人们生活的关系,感受水资源的珍贵。 活动二:我遭遇了不幸学生阅读教材第 36页的图文,找一找小水滴遭遇了哪些不幸。 小组内交流,生活中见到的小水滴遭遇的不幸,全班交流汇报,教 师相机引导,板书:珍惜。设计意图:发现生活中污染、浪费水资源的现象,明白可以靠 法律法规的作用,切实有效地保护水资源。
∴∠AEP=∠ACB,∠APE=∠ABC,∴△AEP∽△ACB.∴PECB=APAB,即1.89=2AB,解得AB=10(m).∴QB=AB-AP-PQ=10-2-6.5=1.5(m),即小明站在点Q时在路灯AD下影子的长度为1.5m;(2)同理可证△HQB∽△DAB,∴HQDA=QBAB,即1.8AD=1.510,解得AD=12(m).即路灯AD的高度为12m.方法总结:解决本题的关键是构造相似三角形,然后利用相似三角形的性质求出对应线段的长度.三、板书设计投影的概念与中心投影投影的概念:物体在光线的照射下,会 在地面或其他平面上留 下它的影子,这就是投影 现象中心投影概念:点光源的光线形成的 投影变化规律影子是生活中常见的现象,在探索物体与其投影关系的活动中,体会立体图形与平面图形的相互转化关系,发展学生的空间观念.通过在灯光下摆弄小棒、纸片,体会、观察影子大小和形状的变化情况,总结规律,培养学生观察问题、分析问题的能力.
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三、板书设计1.等腰三角形的判定定理:有两个角相等的三角形是等腰三角形(等角对等边).2.反证法(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.解决几何证明题时,应结合图形,联想我们已学过的定义、公理、定理等知识,寻找结论成立所需要的条件.要特别注意的是,不要遗漏题目中的已知条件.解题时学会分析,可以采用执果索因(从结论出发,探寻结论成立所需的条件)的方法.
方法总结:解题的关键是由题意列出不等式求出这个少算的内角的取值范围.探究点二:多边形的外角和定理【类型一】 已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正()A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】 多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是()A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n=3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.
一.说教材我今天说课的内容是义务教育课程标准北师大版七年级下册第四单元第二节的《用关系式表示的变量间关系》。在上节课的学习中学生已通过分析表格中的数据,感受到变量之间的相依关系,并用自己的语言加以描述,初步具有了有条理的思考和表达的能力,为本节的深入学习奠定了基础。二.说教学目标本节课根据新的教学理念和学生需要掌握的知识,确立本节课的三种教学目标:知识与能力目标:根据具体情况,能用适当的函数表示方法刻画简单实际问题中变量之间的关系,能确定简单实际问题中函数自变量的取值范围,并会求函数值。过程与方法目标:经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另一个变量的影响,发展符号感。情感态度与价值观目标:通过研究,学习培养抽象思维能力和概括能力,通过对自变量和因变量关系的表达,培养数学建模能力,增强应用意识。
◆重要图释1、图2.4“洞庭湖及荆江地区飞机遥感影像”图此图为飞机遥感影像成像后利用地理信息系统在室内分析处理而成。飞机遥感时正值阴雨天气,虽然图面较暗,但地物仍然具有较高的分辨率。图中湖、河等水域为黑色。居民点的颜色为浅灰色,农田格局依稀可见。2、图2.5“洞庭湖及荆江地区卫星遥感影像”图此图为卫星遥感影像成像后利用地理信息系统在室内分析处理而成。图中深色的范围表示水体,城市呈灰白色。图中看不出农田的格局,说明卫星遥感对地物的分辨率没有飞机遥感高。【学习策略】由于3S技术涉及计算机技术、地球科学、信息科学、系统科学等多个领域,技术含量高、综合性强,对于高中生来说,比较难理解,所以,本节课在介绍有关技术时,可借助教材中的流程图和影像图片。教师应采用多媒体辅助教学手段,增强学生对“3S”技术的直观认识。
三、说教法、学法从素质教育着眼点来看,要贯彻传授知识与培养能力相结合的原则,不仅要使学生学会知识,更要使学生会学、乐学、主动去学。为了更充分地发挥学生的主体地位,使他们能够自主学习,切实提高课堂教学效率。在教学方法上,采用谈话激趣、回忆交流、讨论归纳、强化练习等教学方法,循循诱导,让学生在比赛、游戏、练习、合作中自主学习,巩固和拓展所学知识。四、说教学过程“将课堂还给学生,让课堂焕发生命的活力”“努力营造学生在教学活动中自主学习的时间和空间”从这种设计理念出发,为了更好的达到教学目标,突出重点,增强教学效果,使学生计算能力得到真正发展,我对本节课设计如下几个环节:(一)、激趣导入。同学们,这几天我们一直在学习多位数乘一位数的知识,你们想不想知道我们今天要学习什么知识?
比较2和3两个算式:这两个算式的不同?请学生具体解释一下270-180为什么要用括号?让学生体会到解决问题的思路不同,解决方法也不同,计算的步数也是不同的。(再请学生分别说说这两个算式的计算过程,每一步的含义。)小结:括号是用来改变运算顺序的。当你列出的综合算式的运算顺序与实际需要的运算顺序不相符时,就用括号来改变运算顺序。比如(擦去(270-180)÷30中的括号)这样的算式中先算什么?按照混合运算顺序的规定是不能先算270-180的,要想先算这部分就要用括号把这一步括起来。这个算式才正确表示了我们解决问题的方法步骤。(设计意图:在这个环节中,在自主探索的基础上,教师给学生提供充分表达自己见解的机会,阐述自己得出的结论探究过程及疑难问题。然后根据学生反馈的信息,组织、引导学生通过个体发言、小组讨论、辩论等多种形式进行辨析评价,使学生的认知结构更加稳定和完善。)
三、估算度的把握。《标准》在计算教学方面强调的内容之一是重视估算,培养估算意识。我们认为重视估算,就是对学生数感的培养,具体体现在能估计运算的结果,并对结果的合理性作出解释。本节课的设计就是让学生在具体情境中,学会两种估算方法,结合具体情况作出合理解释。四、教会学生单元整理与复习的方法,使学生终身受益。我们知道授人以渔而非鱼的道理。在本节课中,老师设计了引导学生学会整理与复习的方法,如:带着问题看书,将算式分类、归纳、总结出本单元所学内容,计算方法,注意地方,最后进行有针对性的练习。如果我们的老师从小就有意识地对学生进行学习方法的培养,学生将终身受益。我想我们教学研讨活动就是为了实现教育的最高境界:今天的教是为了明天的不教。
1、、用多媒体幻灯片逐一出示各种图片。创设问题情境。引导学生提出用乘法计算问题。内容:邮局邮票出售处,有的邮票一枚80分,有的邮票一枚60分。百货商店鞋柜,一双旅游鞋78元,一双皮鞋164元。电影院售票处:日场一张电影票15元,夜场一张电影票20元。小袋鼠蹦跳一次约2米,小袋鼠蹦跳33次。文具商店柜台,每合图钉120个,每包日记本25本。2、出示教科书第70页例2主题图:三年纪一班29个同学去参观航天航空展览,门票每张8元。请学生提出问题,老师在学生提出问题的基础上,补充提出如果老师这时只带250元钱去够吗?二、尝试解决。1、教师先请学生猜一猜带250元够不够?再请学生思考怎么知道我们猜得对不对呢?看看小精灵是怎么说的?2、怎么才能知道8×29大约是多少呢?能不能用我们前面学过的计算方法来解决这个问题。3、启发学生想出前面我们已经学过整十乘一位数的乘法口算。我们可以把29看成最接近的整十数来估算。
一.教材分析本节课选自人教版数学教材三年级下册第二单元《除数是一位数的除法》第二小节《笔算除法》的第一课时——《“一位数除两位数商是两位数”的笔算除法》。1.教材的特点、地位和作用:本节课是整数除法的相关知识,它是在口算除法和除法竖式的基础上进行教学的,又为学生掌握除数是两位数的除法、学习除数是多位数的除法奠定了扎实的知识和思维基础。通过学习,让学生在活动中理解笔算除法的算理,探索用竖式计算的合理程序。教科书安排了两个例题,例1是一位数除两位数,被除数的各个数位上的数都能被整除,主要解决除的顺序和竖式写法的问题;例2也是一位数除两位数,但除到被除数十位上有余数。本节课内容,对学生进一步学习笔算除法有着非常重要的作用。2.教材的重点和难点:重点是理解算理,掌握算法.掌握笔算除法的步骤和商的书写位置。难点是让学生理解每求出一位商后,如果有余数,应该与下一位上的数连在一起继续除的道理。
(一)教学内容:我说课的内容是第5单元中内容,(二)教材地位:加法是数学中最基本的运算之一。从教材的纵向联系来看,几年前已学过整数加法和小数加法,以及加法的运算定律,知道它不仅适用于整数加法,而且也适用于小数加法。那么是否也适用于现在所学习的分数加法呢?这就是我们这节课要研究的问题,当然,结果是肯定的。通过本课的学习,将整数加法的运算定律推广到分数加法,可使学生对加法的认识从感性上升到理性。为后面学习分数加法的简便计算打好基础,同时也为学习小数、分数混合运算奠定基础。其次,将整数加法的运算定律推广到分数加法,也拓展了加法运算定律的使用范围,丰富其内涵。而且加法运算定律字母表示形式,为以后代数知识的学习奠定了初步基础。
师:这是一种较为简便、应用广泛的方法,但有时候也要具体问题具体分析,做题时要合理灵活地选择计算方法。《研究学生如何学比研究教师如何教更重要。学生对新知识的学习必须以已有的知识和学习经验作为基础,因此正确分析学生的知识基础和学习经验就显得格外重要。我认为分数除以整数的教学基础在于以下几点:分数与小数的转化;分数的意义;分数乘法的意义;倒数的知识;商不变的性质等。这些知识在以前的学习中,学都有了足够的掌握。有了上面的分析基础,我觉得把研究新知识的权力教给学生,是完全可以的。》4、质疑与反思。师:对于这些方法,尽管大家的思维角度不尽相同,但是基本的想法是相同的,想一想我们是怎样解决问题的?生:用学过的倒数、商不变的性质解决的。师:对。用一句话概括就是运用旧知识解决新新问题。这是一种很重要的学习方法。5、实践体验练习巩固。
一.说教材。我说课的内容是人教版课程标准实验教科书六年级上册的分数除法单元中的例1和例2。例1是分数除法的意义认识,例2是分数除以整数的计算。在这之前学生已经掌握了整数除法的意义和分数乘法的意义及计算,而本课的学习将为统一分数除法计算法则打下基础。例1先是整数除法回顾,再由100克=1/10千克,从而引出分数除法算式,通过类比使学生认识到分数除法的意义与整数除法的意义相同,都是‘已知两个因数的积和其中一个因数,求另一个因数的运算’。例2是分数除以整数的计算教学,意在通过让学生进行折纸实验、验证,引导学生将‘图’和‘式’进行对照分析,从而发现算法,感悟算理,同时也初步感受数形结合的思想方法。根据刚才对教材的理解,本节课的教学目标是:1、理解分数除法的意义与整数除法的意义相同。2.理解分数除以整数的计算原理,掌握计算方法,并能正确的进行计算。
6.新冠肺炎疫情发生以来,中央强调,在疫情防控工作中,要坚决反对形式主义、 官僚主义, 让基层干部把更多精力投入到疫情防控第一线。这样要求 ( )①有利于政府工作人员依法行政②有利于政府履行职责,维护广大人民群众的根本利益③有利于形成良好的社会风气④警示人类必须坚持走可持续发展的道路A. ①②③ B. ①②④ C. ①③④ D. ②③④ 7.中央纪委监察部网站(现中央纪委国家监委网站)开通纠正“四风”(形式主义、 官僚主义、 享乐主义和奢靡之风) 监督举报直通车,引导网友积极举报各种公款 吃喝、公款旅游等“四风”问题。这一做法 ( )①扩大了我国公民的政治经济权利②有利于政府依法行政,实现国家长治久安③有利于提高我国公民的民主监督意识④有利于国家机关及其工作人员勤政廉洁A. ①②③ B. ①②④ C. ①③④ D. ②③④ 8.《孟子 ·离娄上》有言:“徒善不足以为政, 徒法不能以自行。”
8.2021年10月11日下午, 2021年国家网络安全宣传周网络安全技术高峰论坛在西安 国际会展中心举行。本届宣传周以“网络安全为人民,网络安全靠人民”为主题。为促 进网络安全,我们中学生可以( )①自觉遵守国家法律,规范自身行为 ②加强对互联网的监督管理③应增强尊法学法守法用法意识,强化规则意识 ④开展网上扫黄打非专项活动A.①③ B.①④ C.②③ D.②④9.2022年春天,受新冠肺炎疫情影响很多行业都处于“封冻期”,电商直播行业却 逆势上涨,成为逆势发展的一个新风口。但电商直播购物存在的人气造假、评论造假、 夸大宣传、诱导交易等问题也值得我们警惕。对此,你的看法是( )①电商直播新经济,推动发展当支持 ②遵法守信讲规则,电商直播当谨记③直播购物要理性,提高警惕重防范 ④电商购物易受骗,及时远离方为妙A.①②③ B.①②④ C.①③④ D.②③④
《比的化简》是北师大版六年级上册第52——53页的教学内容,主要学习化简比的方法。教材联系学生的生活创设问题情境,让学生在解决问题的过程中加深对比的意义的理解,进一步感受比、除法、分数的关系,体会化简比的必要性,学会化简比的方法。在这之前,学生早已学过“商不变的性质”和“分数的基本性质”,最近又认识了比,初步理解了比的意义,以及比与除法、分数的关系,大部分学生能较为熟练地求比值。比较而言,实际上化简比与求比值的方法有相通之处,那么借助知识的迁移能帮助学生顺利理解掌握新知识。二、说教学目标:知识与能力:会运用商不变的性质或分数的基本性质化简比。过程与方法:在实际情境中,让学生体会化简比的必要性,在观察、比较中理解什么是化简比,,并能解决一些简单的实际问题。情感、态度与价值观:促进知识迁移,培养学生的概括能力。体验知识的相通性以及数学与生活的联系。
1、结合具体情境,体会生活中变化的量,感觉变化的量之间的关系,认识变化特征。2、通过自主探究,合作交流,在活动过程中培养学生用多种方法解决问题的能力,进一步发展学生观察、比较、概括等能力,渗透分类的数学思想。3、经历数学活动的过程,体验用多种方法研究问题的乐趣,感觉成功的快乐,增强学好数学的信心。教材安排了多个生活情境,以表格、图像、关系式等不同方式呈现,目的是让学生通过多种方式认识变化的量的特征。因此,我确定本课的教学重点是结合具体情境,感觉变化的量之间的关系,认识变化特征。六年级的学生,抽象思维得到了一定的发展,但以前从未接触过变化的量,从之前熟悉的定向思维模式转向多向思维模式,并认识变化特征会有一定的困难。因此,我确定本课的教学难点是用多种方式认识变化的量的变化特征。本课需要教师准备多媒体课件,为学生准备学习单。