教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
(2)观察记录,找出共同点。1. 观察: 在食品、衣服、文具、家电产品、药品等商品中任选一类,收集他们的商品标签、外包装、说明书等。2. 比较异同: 比较一下,同类产品有哪些共同的信息。 3. 记录信息: 仔细阅读并完成下面的观察记录表。4. 认一认:你在哪里看到过这样的标志,你知道这些标志的含义吗?【设计理念】通过系列活动,让学生参与实践活动中,从中获得知识。 活动二:避免购物小麻烦(一)读一读,析一析,学一学。1. 阅读常见购物中的陷阱。 “如果你不需要发票,我可以给你便宜点。” “亏本大甩卖。”2. 分析:容易出现什么麻烦和纠纷?为了避免出现麻烦和纠纷,在购物时应注意哪些问题?3. 学习“小贴士”。4. 出主意:你还有什么要提醒大家的吗?(二)交流、分享经验。你有网购的经历吗?你知道网购需要注意哪些问题吗?和同学们分享一下
1.培养学习语文的兴趣,感悟生活处处皆语文的道理。2.了解招牌、广告词和对联。3.按兴趣分组,制定活动计划。 一、导入新课师:同学们,我们学习语文都有哪些途径呢?(生:课本、课堂。)除此之外,老师认为还可以通过以下途径来学习语文。从媒体中学语文——网络用语、手机短信、歌词等;从名字中学语文——人名、地名等;向群众学语文——俗语、谚语、歇后语等;从传统文化中学语文——对联……从广告中学语文——商业广告、公益广告…… 师:无论是读书看报、与人聊天,还是听相声、看电视、逛商场,只要留心观察,随时注意语言现象,总会发现与语文有关的问题。书本上、电视上、报纸上满是汉字。大街上的招牌、广告、门对等全都充满语文气息。语文学习不能局限于课堂与书本,生活处处有语文。今天,我们就来开展综合性学习活动“我的语文生活”,看看怎样在生活中学习语文。
【幼儿分析】 小班的小朋友年龄普遍偏小,再加上家长对方面的教育相对薄弱点,刚入园时只有几个幼儿能认识几种主色调,大部分的幼儿一种颜色也不认识。因此如何教会幼儿认识颜色是我们老师迫切需要解决的问题。为了让幼儿迅速掌握颜色,我根据幼儿的年龄特点,在本次活动中,为幼儿创设了相关课题情景的内容,让孩子们在兴高采烈地活动、游戏中不知不觉的掌握抽象的颜色。 【活动目标】 1、培养对颜色的兴趣,认识红、黄、蓝三原色。 2、初步培养幼儿的观察能力,动手操作的能力。 3、初步在探索中懂得将两种颜色混在一起可以变成另外的一种颜色,产生探索周围事物颜色的兴趣。 【活动准备】 1、红、黄、蓝颜料、棉签若干、颜料盒若干。 2、透明玻璃板若干。 3、颜色小精灵的图片一张。 4、绘画纸人手一份。
五、教学反思:时钟的秒针、分针、时针扫的图形, 汽车挡风玻璃的刮水器;刷工人刷过的面积近似看为扇形。圆中的计算问题---弧长和扇形的面积,虽然新课标、新教材要求学习,但本节教师结合学生的实际要求,将其作为内容进行拓展与延伸,具有一定的实际意义。用生活中动态几何解释扇形,体验解决问题策略的多样性,发展实践能力与创新精神。本节课,教师通过“扇子”的问题情景引入新课,它蕴含了大量的情感信息,有效激发学生的求知欲望,充分调动学生的学习积极性,注重学生的参与,让出时间与空间由学生动手实践,鼓励学生自主探索、合作交流、展示成果,提高了学生发现问题、提出问题、解决问题的能力。用“扇子变化”,帮助学生探索自然界中事物的动静结合问题,利用“扇子的文化”的新奇感激起学生的学习热情,陶冶了学生的学习情操,从而使学生更深切地理解问题,使原本单调枯燥的数学变得生动、形象,激发学生的情感,使课堂充满生机。
(2)∵点G是BC的中点,BC=12,∴BG=CG=12BC=6.∵四边形AGCD是平行四边形,DC=10,AG=DC=10,在Rt△ABG中,根据勾股定理得AB=8,∴四边形AGCD的面积为6×8=48.方法总结:本题考查了平行四边形的判定和性质,勾股定理,平行四边形的面积,掌握定理是解题的关键.三、板书设计1.平行四边形的判定定理3:对角线互相平分的四边形是平行四边形;2.平行线的距离;如果两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离都相等,这个距离称为平行线之间的距离.3.平行四边形判定和性质的综合.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行,在探究两条平行线间的距离时,要让学生进行合作交流.在解决有关平行四边形的问题时,要根据其判定和性质综合考虑,培养学生的逻辑思维能力.
【幼儿分析】 大班的孩子已经有意识地关注自己身边的事物,而且对于身边发生的问题有了一定的主见,能够善于观察,还能产生一些独特、新颖的想法。活动中以科学家叔叔打来的电话为线贯穿两个环节,激发了孩子的兴趣,符合大班孩子充分表现自己的年龄特点,使目标达成度高。 【设计理念】 本次活动的设计注重培养孩子勇于探索,大胆想象,初步创新的意识。孩子是好奇的,飞机能在天空中飞翔,这一现象对于大班孩子充满趣味性和吸引力,是培养孩子创新思维能力,激发孩子体验创新思维乐趣的良好载体。活动中充分调动孩子的生活经验,让孩子充分发挥想象,从不同的角度来思考问题,激活孩子的创新思维,展开他们的思维空间,充分拓展孩子思路。
【活动目标】1、学会目测有明显大小差异的物体,懂得物体的大小是通过比较来认识的。2、通过游戏使幼儿初步体会到由大到小和由小到大之间的转变,初步发展幼儿的多向思维。3、激发幼儿探索的主动性、积极性,培养幼儿探索的兴趣。 【活动准备】1、硬纸鱼20条(有大小差别)、钓鱼竿若干、用大积木围搭成一个“池塘”。2、吹泡泡用具:装有肥皂水的塑料瓶人手一份,吸管(单孔、多孔、粗细不一)数量多于幼儿人数,气球若干。3、可变大或变小的食物若干种,如饼干、水果、青菜、木耳干等。4、照相机、大白纸和画笔,幼儿自带小时候的照片和近照。
前段时间曾经看到一个报道,让我很受启发,说美国一家大公司非常重视安全工作,不管召开任何会议他们都有一个惯例,正式开会之前主持人必须说:“开会前,我先向诸位介绍安全出口。”而且,在会议室里还有一张特殊的椅子,上面罩着一个红布套,套子上写着“如有紧急情况请跟我来”。这张椅子不是每个人都可以坐,只有非常熟悉所在楼道情况的人才有资格坐。公司还规定,上下楼梯必须扶扶手,在办公室里不准奔跑,铅笔芯要朝下插在笔筒内,喝水时手里不许把玩东西———如此谨小慎微的安全教育、规章制度和具体措施,看起来是安全生产管理中的一个个小小元素,但正是这一个个小小的安全元素,使得这家大公司一直保持着骄人的安全记录,并造就了“让员工在工作场所比在家里安全十倍”的神话———这就是享有全球最安全公司美称之一的杜帮公司。
2022领导安全生产的讲话稿?各位领导、各位朋友:大家好!不论是工作或生活中,我们常常忽略一些无关紧要甚至是看上去不起眼的小事物,常常抱着不足挂齿,微不足道之态度,其实不然。前段时间曾经看到一个报道,让我很受启发,说美国一家大公司非常重视安全工作,不管召开任何会议他们都有一个惯例,正式开会之前主持人必须说:“开会前,我先向诸位介绍安全出口。”而且,在会议室里还有一张特殊的椅子,上面罩着一个红布套,套子上写着“如有紧急情况请跟我来”。这张椅子不是每个人都可以坐,只有非常熟悉所在楼道情况的人才有资格坐。公司还规定,上下楼梯必须扶扶手,在办公室里不准奔跑,铅笔芯要朝下插在笔筒内,喝水时手里不许把玩东西———如此谨小慎微的安全教育、规章制度和具体措施,看起来是安全生产管理中的一个个小小元素,但正是这一个个小小的安全元素,使得这家大公司一直保持着骄人的安全记录,并造就了“让员工在工作场所比在家里安全十倍”的神话———这就是享有全球最安全公司美称之一的杜帮公司。很显然,杜帮公司是抓住了安全生产管理中的细节和元素,这些看起来微不足道的细节和元素,正是安全生产中的命脉之穴。这不禁让我想到了曾经发生在
这个学期我们招收新生幼儿175名(其中包括五义办学点的27名小班的小朋友)小班配有两教一保,即班主任、配班老师、保育员。幼儿园班主任既是幼儿的组织者又是他们的领导者和教育者,她既担负着教育教学工作设计与计划,又管理着幼儿日常所有琐碎事务。配班老师在班主任的指导下,根据班级计划及每周活动安排配合班主任组织实施教育教学活动。保育员是负责照顾幼儿的生活老师。教师是一项最辛苦、责任最大、要求最高的职业。我们幼儿园里的每一位老师都是经过挑选、资格认可才最后录用的,各位教师都是德才兼备的。每年九月份新招收的孩子们刚入园时,由于对环境不适应,有些孩子又哭又闹、对老师又踢又咬,即便这样,我们的老师们也没有怨言,仍然耐心细致地哄着他们,用妈妈的爱平复着孩子入园的焦虑,让他们感觉幼儿园就像自己的家;这段时间,经过教师与保育员的辛苦努力,小班幼儿在园一日生活情况已趋向稳定。你们的孩子已经慢慢的适应了幼儿园的集体生活。
作为母亲,此时此刻,我无比激动,多少个艰辛和忙乱的日子里,总盼望着孩子长大,我曾无数次的想象和憧憬着她身穿婚纱亭亭玉立的站在我们面前的情景。突然间她长大了,拥有了漂亮、健康和知识,今天又做了幸福的新娘!母爱是一条回家的小路,伴着这首诗我的女儿走过了二十几个春夏秋冬。在她成长的路上,给我们带来了许许多多的快乐与幸福。至今我还能清晰的记得她六岁时获得宁波市舞蹈比赛一等奖的演出情景,后来的全国雏鹰奖和新苗杯主持人金奖给我们带来了一次次的惊喜和欣慰。因此。我祝福我的女儿,也感谢我的女儿。同时我也感谢我们的亲家,你们的精心培养让我们的家庭从今天开始有了一个儿子。