教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气. 2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示
解析:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根据对称轴是x=-3,求出b=6,即可得出答案;(2)根据CD∥x轴,得出点C与点D关于x=-3对称,根据点C在对称轴左侧,且CD=8,求出点C的横坐标和纵坐标,再根据点B的坐标为(0,5),求出△BCD中CD边上的高,即可求出△BCD的面积.解:(1)把点A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵对称轴是x=-3,∴-b2=-3,∴b=6,∴c=5,∴抛物线的解析式是y=x2+6x+5;(2)∵CD∥x轴,∴点C与点D关于x=-3对称.∵点C在对称轴左侧,且CD=8,∴点C的横坐标为-7,∴点C的纵坐标为(-7)2+6×(-7)+5=12.∵点B的坐标为(0,5),∴△BCD中CD边上的高为12-5=7,∴△BCD的面积=12×8×7=28.方法总结:此题考查了待定系数法求二次函数的解析式以及二次函数的图象和性质,注意掌握数形结合思想与方程思想的应用.
教学目标:1.能利用三角函数概念推导出特殊角的三角函数值.2.在探索特殊角的三角函数值的过程中体会数形结合思想.教学重点:特殊角30°、60°、45°的三角函数值.教学难点:灵活应用特殊角的三角函数值进行计算.☆ 预习导航 ☆一、链接:1.如图,用小写字母表示下列三角函数:sinA = sinB =cosA = cosB =tanA = tanB =2. 中,如果∠A=30°,那么三边长有什么特殊的数量关系?如果∠A=45°,那么三边长有什么特殊的数量关系?二、导读:仔细阅读课本内容后完成下面填空:
如图,课外数学小组要测量小山坡上塔的高度DE,DE所在直线与水平线AN垂直.他们在A处测得塔尖D的仰角为45°,再沿着射线AN方向前进50米到达B处,此时测得塔尖D的仰角∠DBN=61.4°,小山坡坡顶E的仰角∠EBN=25.6°.现在请你帮助课外活动小组算一算塔高DE大约是多少米(结果精确到个位).解析:根据锐角三角函数关系表示出BF的长,进而求出EF的长,得出答案.解:延长DE交AB延长线于点F,则∠DFA=90°.∵∠A=45°,∴AF=DF.设EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,则DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大约是81米.方法总结:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.
解在角度单位状态为“度”的情况下(屏幕显示出 ),按下列顺序依次按键:显示结果为36.538 445 77.再按键:显示结果为36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求锐角x.(精确到1′)分析根据tan x= ,可以求出tan x的值,然后根据例4的方法就可以求出锐角x的值.四、课堂练习1. 使用计算器求下列三角函数值.(精确到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知锐角a的三角函数值,使用计算器求锐角a.(精确到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、学习小结内容总结不同计算器操作不同,按键定义也不一样。同一锐角的正切值与余切值互为倒数。在生活中运用计算器一定要注意计算器说明书的保管与使用。方法归纳在解决直角三角形的相关问题时,常常使用计算器帮助我们处理比较复杂的计算。
然后,她沿着坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度(参考数据:2≈1.41,结果精确到0.1米).解析:作辅助线EF⊥AC于点F,根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,通过平角减去其他角从而得到∠AEF=45°,即可求出AE的长度.解:作EF⊥AC于点F,根据题意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娱乐场地所在山坡AE的长度约为190.4米.方法总结:解决本题的关键是能借助仰角、俯角和坡度构造直角三角形,并结合图形利用三角函数解直角三角形.
③设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大?☆ 归纳反思 ☆总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。☆ 达标检测 ☆ 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的日租金提高10元时,每天租出的汽车会相应地减少4辆.问每辆出租车的日租金提高多少元,才会使公司一天有最多的收入?
如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4 D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:利用二次函数求图形面积的最大值【类型一】 利用二次函数求矩形面积的最大值
解析:点E是BC︵的中点,根据圆周角定理的推论可得∠BAE=∠CBE,可证得△BDE∽△ABE,然后由相似三角形的对应边成比例得结论.证明:∵点E是BC︵的中点,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.
1.了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用;(重点)2.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长l=nπR180和扇形面积S扇=nπR2360的计算公式,并应用这些公式解决一些问题.(难点)一、情境导入如图是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗(π 取3.14)?我们容易看出这段铁轨是圆周长的14,所以铁轨的长度l≈2×3.14×1004=157(米). 如果圆心角是任意的角度,如何计算它所对的弧长呢?二、合作探究探究点一:弧长公式【类型一】 求弧长如图,某厂生产横截面直径为7cm的圆柱形罐头盒,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头盒侧面所形成的弧的度数为90°,则“蘑菇罐头”字样的长度为()
3、归纳求最小公倍数的方法。师:想一想找“共同的休息日”和“总人数”的过程,说一说可以怎样求两个数的最小公倍数?(①找倍数:从小到大依次找出各个数的倍数;②找公有:把各个数的倍数进行对照找出公有的倍数;③找最小:从公有的倍数中找出最小的一个。)4、看书88——89页,你还有什么问题?师:观察一下,为什么6和8这两个数不相同,却可以写出相同的公倍数呢?公倍数与原有的这两个数有什么关系?公倍数与它们的最小公倍数又有什么关系?教师画出数轴表示6和8的倍数,并可生动地比喻6宝宝步子小,要走3次才能到达24的位置。而8宝宝步子大,只要走两次就到达24的位置。到达24的位置后,6宝宝和8宝宝就碰面了。可见公倍数24是6和8的不同倍数。三、解决问题,深化理解(练习是理解知识,掌握知识,形成技能的基本途径,又是运用知识,发展智能,完善认知结构的重要手段。
(四)、课堂小结:1.提出问题:请谈一谈这节课你有哪些收获?2.你觉得这节课自己表现怎么样?谁表现得最好?请你评一评。(进一步引导学生对比较数的大小的方法进行归纳、总结,从而使学生完成知识的构建。让学生对自己和同伴做出评价,以利于学生今后的成长。)总之,本节课的设计力图体现新课程的理念,以促进学生的发展为宗旨,充分体现了学生学习的自主性,相信学生的能力,挖掘学生的各项能力,,激发学生学习数学的兴趣,增强数学学习的信心,体会数学与生活的联系。七、说教学反思在二年级下册《万以内数的认识》单元中,学生已经掌握了“千以内数的大小比较”的方法,“万以内数的大小比较”只需在此基础上完成知识的顺迁移即可。因此,在本堂课的教学设计中我并不急着把“比较数的大小”的方法教给学生,而是把重点放在了学生对大小比较的真正理解上,通过本节课的学习能用自己的方法解决实际问题。
【说教材分析】本节课的教学内容是千以内数的大小比较,教材把比较数的大小分为两种情况:位数相同的数比较大小,位数不同的数比较大小。是在学生掌握了百以内数的大小比较方法,能认读千以内数,理解数的组成的基础上开展教学的。而且在实际生活中,学生积累了大量感性经验,学生已经能初步感知、判断出数的大小。本节课的重点首先应达成知识技能目标,学生自主探究出千以内数的大小比较方法,能正确、快速比较出千以内数的大小,在大量的、多种形式的练习中培养学生的数感。教材没有将比较数的大小的方法归纳概括出来,是放手让学生自主观察、比较、分析、概括,合作商量,在学生充分表达、交流自己的想法的过程中,让学生自己发现、总结出数的大小比较方法。其次,在实际应用中让学生体会到生活中对数的应用的广泛性、实用性,从而强化所学知识,获得积极的情感体验。
五、教学评价《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”这节课的设计着力让学生通过参与有效的实际操作、观察比较来概括出“找次品”的最佳方案。把学生的学习定位在自主建构知识的基础上,建立了“猜想——验证——反思——运用”的教学模式。让学生体验解决问题策略的多样性及运用优化的方法解决问题的有效性。培养学生的自主性学习能力和创造性解决问题的能力。(一)创设情景通过身边生活实例,为学生创设问题情景,让数学问题生活化,一上课就吸引住学生的注意力,调动他们的探究兴趣,为后面的教学做好铺垫,使学生进入最佳的学习状态。让学生充分感受到数学与日常生活的密切联系。
还有一点思考是作为教师应该有这样一种认识,学生从自己的头脑中搜索有价值的数学知识储备,并对这些知识储备进行筛选和取舍,这是一种重要的能力。换句话讲,这就是学生分析问题和解决问题的能力,这种能力是需要培养的,这也是在第二学段“综合应用”中必须把握的准则。教学目标:1、让学生经历粉刷围墙的实践活动,巩固长方体表面积的计算方法,加强数学知识在实际生活中的应用。2、通过活动,培养学生收集、分析信息的意识和能力,使学生能根据实际情况,选择合理方案。3、让学生体验数学知识与生活的紧密联系,并利用数学知识科学地指导生活,感受成功。教学重点:整理分析和比较信息,制定方案。教学难点:策略的优化。教学准备:课前做好相关数据收集整理的准备工作,教师尤其要在课前了解学生调查的涂料价目。学生准备:计算器,记录纸等。
5、 你能结合刚才的活动说一说你的感受吗?6、 看来物体所占空间还有大小之分,那你能判断出手机、收音机哪个物体所占的空间大?哪个物体所占的空间小吗?7、 象石块、手机、书包等这些都是它们的体积,谁能根据你的理解说一说什么是物体的体积?[小学生的思维以形象思维为主,随着年龄的增长逐步向抽象思维过渡。根据这一特点,我在学生感知“空间”的基础上,通过三次摸一摸的活动,引导学生进行操作、观察,思考,使操作、观察与思维、语言表达紧密结合起来,然后再逐步摆脱直观形象,利用表象逐步抽象形成概念,由感性认识上升到理性认识。](三) 尝试、解决问题在新一轮课改中,《标准》所提倡的数学课堂教学应“由单纯的传授知识的殿堂转变为学生主动从事数学活动的场所;学生从单纯的知识接受者转变为数学学习的主人。”
(通过这道题的练习,可以看出中国的汉字是非常美的。谁能举例说出哪些汉字可以写成轴对称图形吗?)(师生共同品味中国文字的对称美,从而宏扬中国文化,做到知识性、技能性、思想性和艺术性溶为一体。)4、配乐剪轴对称图形比赛。请同学们拿出一张彩色纸用对折的方法剪出一个轴对称图形,然后贴在白纸上。并把剪得的作品贴在黑板上让大家欣赏。引导学生观察:哪些图形较美?为什么?五、归纳小结。设问 :今天学了什么?什么叫轴对称图形? 怎样判断轴对称图形? 什么叫对称轴?怎样找出轴对称图形的对称轴?(新课后的总结能起到画龙点睛的作用,同时有利于帮助学生理清知识结构,形成完整认识。)全课小结:这节课,我通过五个环节的教学设计,既遵循了概念教学的规律,又符合小学生的认知特点,指导学生操作、观察、引导概括,获取新知;同时注重培养学生的形象思维和抽象思维。
《打电话》这节课是人教版小学数学五年级下册的综合应用。是继“烙饼问题”、“沏茶问题”“等候时间”之后又一次向学生渗透运用运筹思想解决实际问题的内容。教材的素材是学生生活中所熟悉的,合唱队在假期接到一个紧急任务,老师要打电话“尽快”通知到15名队员。让学生帮助老师设计一个打电话的方案,并从中寻找最优的方案。通过这个实践与综合应用,旨在让学生进一步体会数学与生活的密切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。因此,我认为,本节课的目标应定位于:1、让学生尝试在解决问题的多种方案中寻找最优方案。通过动手操作、画图模拟等方式发现事物隐含的规律;
3. 实验(课件演示)每个人每天要喝1400毫升水,也就是1.4升,让同学们猜出猜看能有几杯水,通过实验告诉学生每天至少要喝多少杯水。(课件演示)阅读材料,对学生进行节约用水的思想教育。4. 教师:我们知道了容积和容积单位,也知道了它们与体积单位的关系,现在让我们试一试怎样计算一个容器的容积.出示例5、一种小汽车上的油箱,里面长5dm,宽4dm,高2dm。这个油箱可以装汽油多少升?请一位同学读题.教师:这道题告诉了我们油箱里面的长、宽、高,我们能不能计算出它的容积?(可以.)但是,我们能不能直接算出它的容积是多少升?(不能.)那么应该怎样做?(先算出体积,再把算出的体积单位的名数改写成容积单位的名数.)教师让学生独立做题,教师行间巡视,做完后一步一步地指名让学生说一说是怎么做的,集体订正。
例1用为每个小朋友准备春游食品的活动,由“应该每份同样多”引出“平均分”,让学生认识“每份分得同样多,叫平均分”。接着,通过例2、例3,让学生经历“平均分”的过程,建立起“平均分”的概念。二、说教学目标二年级学生年龄小,他们以直观思维为主,不易理解抽象的概念。虽然他们在平时的生活实践中已有一定的分物品的经验,但缺少平均分物品的实践经验。因此,他们对于“什么是平均分”,“怎样平均分物品”都感到比较困惑。所以,本节课的教学目标可以预设为:1.引导学生在具体情境中感受“平均分”,在分东西的实践活动中建立“平均分”的概念,理解“平均分”的含义。2.让学生经历“平均分”的过程,在具体情境与实践活动中明确“平均分”的含义,掌握“平均分”物品的不同方法。3.培养学生自主探究的意识和解决问题的能力。