活动准备: 人手三块磁铁(一个彩色磁铁,两个环形磁铁),两份记录纸,红绿水彩笔和即时贴 活动过程:一、激发幼儿的探索兴趣,引发活动课题。1、小朋友,你们看过天线宝宝吗?它们四个好朋友你爱我,我爱你的时候会怎么做呢?2、(老师出示彩色磁铁)你们看这是什么?它也有自己的好朋友呢!它找到好朋友的时候也会和好朋友紧紧地吸在一块儿。你们猜黑板是不是彩色磁铁的好朋友?(老师演示实验,并引导幼儿学习记录的方法)如果是他的好朋友就画上绿点,如果不是它的好朋友就画上红点。3、出示第一张记录纸。彩色磁铁还想找朋友呢,猜一猜哪些东西会是它的朋友呢?到底这些东西是不是彩色磁铁的好朋友呢?我们一起试一试并且把它记录下来。4、 集中。你发现哪里有彩色磁铁的朋友?(总结出磁铁能吸住铁做的东西)二、引导幼儿发现磁铁的两极。1、彩色磁铁能和铁做的东西做好朋友,那它能和环形磁铁做好朋友吗?是不是环形磁铁的两个面都是彩色磁铁的好朋友呢?我们来试一试。交流幼儿的发现。2、我们发现环形磁铁有一面是彩色磁铁的好朋友,一面不是。那我们怎么记录下这个发现,告诉大家哪一面是彩色磁铁的朋友,哪一面不是呢?(引导幼儿在是朋友的一面贴上绿色即时贴,不是朋友的一面贴上红色即时贴。)3、幼儿根据实验在两个环形磁铁上贴上相应的即时贴。老师验证幼儿贴得是否正确。
准备:·知识经验准备:幼儿已经认识了一些常见的植物·材料准备:中草药图片·重点:在植物中对中草药进行分类 过程·情境表演“医院”——教师饰“病人”因咳嗽去看病,“病人”不能吃西药所以幼儿饰“医生”开了一贴中草药“川贝止咳露”,“病人”吃后好多了。——小朋友,你们知道医生给我开的是什么?·感知了解 ——多亏医生给我开了中草药治好了我的病。今天还来了许多中草药朋友,大家用自己的好办法也去认识认识它们吗?
活动目标1、引导幼儿自己做小实验,了解“蒸发”以及“雨是怎样形成的”等科学现象。2、通过探索“雨”的形成,理解“梅雨季节”的来历。3、激发幼儿发现问题,并积极探索自然现象的兴趣。 活动准备1、酒精灯、烧杯、玻璃片、火柴等实验工具。2、投影机、故事《小水滴旅行记》、幻灯片、磁带。
2、培养幼儿的动手操作能力和比较能力。3、引导幼儿通过摸摸、玩玩,感知纸的特性。 活动准备各种各样的纸若干,如卡纸、宣纸、绘画纸、皱纹纸、牛皮纸等。多媒体课件、即时贴、每组一盆水。 活动过程1、带领幼儿欣赏手工制品,引出活动主题。今天这里举办了手工作品展,我们一块去看看吧。提问:你看到了什么?它们使用什么材料制成的?他们虽然都是纸,让我们来找找什么地方不一样?
【活动目标】1.观察认识合欢的花、树、皮。2.简单了解其各部分的功用。3.培养锻炼幼儿的动脑动手及想象思维能力。【活动准备】1.查资料,搜图片,制作幻灯片。2.纸笔、颜料、胶水。3.合欢的花、叶若干(分别放在小筐里)。 【活动方法】 观察法、讲解法、引导发现法、操作法等。【活动过程】 先放幻灯给孩子们看,进一步激发他们的活动兴趣和探究欲望;然后组织全体聚到合欢树下,从观察入手,一步步来引导他们认识合欢树,了解合欢树。1.提问幼儿合欢树的名称,简单了解它的别名:夜合树、马缨花、绒花树、扁担树、芙蓉树。
讲话稿有广义和狭义之分。广义的讲话稿是人们在特定场合发表讲话的文稿;下面就是小编整理的,一起来看一下吧。敬爱的老师们,亲爱的同学们:大家好!"人生应为风行水上,下为急流而上却逍遥"本是说林语堂的人生,形容最好的读书境界倒也贴切。书为我们打开的是另一个世界,是生活之外的一方自由驰骋、写意逍遥的天地。阅读是自古以来的优良传承,古人云:"书犹药也,善读之可以医愚。"苏轼在阅读时还经常手抄,以此来更好地记忆。近代的大学问家哪一位不是读过万卷书?当时的政治家床头也时常摆着一本好书。但可悲的是,在XX年的全世界阅读书籍量上中国除了教科书外,只有人均不到1 本,这个数字与第一名的犹太人相差63本之多!当代浮躁的风气,使国人静不下心来阅读一本好书,只能随着高度发展的社会,寻找刺激的游戏来消遣。作为祖国希望的我们也常常以学业压力大等理由,抽不出时间,或者静不下心来阅读。不再像匡衡般勤学善读,苏秦般发奋努力,鲁迅般博采众家,这是非常可怕的,我们必须重视阅读,学会阅读,习惯阅读。
讲话稿有广义和狭义之分。广义的讲话稿是人们在特定场合发表讲话的文稿;下面就是小编整理的,一起来看一下吧。敬爱的老师们,亲爱的同学们:大家好!"人生应为风行水上,下为急流而上却逍遥"本是说林语堂的人生,形容最好的读书境界倒也贴切。书为我们打开的是另一个世界,是生活之外的一方自由驰骋、写意逍遥的天地。阅读是自古以来的优良传承,古人云:"书犹药也,善读之可以医愚。"苏轼在阅读时还经常手抄,以此来更好地记忆。近代的大学问家哪一位不是读过万卷书?当时的政治家床头也时常摆着一本好书。但可悲的是,在XX年的全世界阅读书籍量上中国除了教科书外,只有人均不到1 本,这个数字与第一名的犹太人相差63本之多!当代浮躁的风气,使国人静不下心来阅读一本好书,只能随着高度发展的社会,寻找刺激的游戏来消遣。作为祖国希望的我们也常常以学业压力大等理由,抽不出时间,或者静不下心来阅读。不再像匡衡般勤学善读,苏秦般发奋努力,鲁迅般博采众家,这是非常可怕的,我们必须重视阅读,学会阅读,习惯阅读。
秋季开学典礼、国旗下讲话稿大全秋季开学典礼讲话稿(学生)尊敬的各位领导、老师,亲爱的同学们: 大家好!度过了一个愉快的寒假,我们又回到了这美丽的校园,迎来了紧张而又快乐的新学期,再起春风,吹拂着我们跳动的心房。沐浴清晨,我们对新学期充满了希望。在这温暖的季节里,我们欢聚一堂,在这和谐的氛围中,我们共享这难得的时光。新的学期,新的希望,让我们就在今天,就在这里一起放飞理想。轻风锁不住流云,流云带走了岁月。是xx学校的老师们,使我们从一个懵懂的儿童变成了品学兼优的少年。我真心地感激所有为我们的成长辛勤付出的老师们。我们决心,从现在开始,用百倍的热情投入到学习生活中去,以优异的成绩回报老师、回报父母,回报学校。新学期全体少先队员共同的心声!新的学期带给了我们新的希望,带给了我们新的憧憬。新学期,新气象,我们要以全新的精神面貌投入到学习生活中:我们要用《学生日常行为规范》来指导自己的言行,做一个品德高尚的人;我们要树立远大的理想,树立更高的学习目标,端正学习态度,掌握学习技能。在学校尊敬老师、爱护同学,在家里孝敬父母,做一些力所能及的家务。亲爱的同学们,我们是否读懂了地里、家里父母的殷切眼神呢?是否读懂了讲桌旁燃烧自己青春之烛的老师的慈爱目光呢?我想,同学们可能会大声地说:“读懂了”。是啊,因为我们的心中早已有了自己的理想!
本节通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题。课程目标1.能利用已知函数模型求解实际问题.2.能自建确定性函数模型解决实际问题.数学学科素养1.数学抽象:建立函数模型,把实际应用问题转化为数学问题;2.逻辑推理:通过数据分析,确定合适的函数模型;3.数学运算:解答数学问题,求得结果;4.数据分析:把数学结果转译成具体问题的结论,做出解答;5.数学建模:借助函数模型,利用函数的思想解决现实生活中的实际问题.重点:利用函数模型解决实际问题;难点:数模型的构造与对数据的处理.
本节课在已学幂函数、指数函数、对数函数的增长方式存在很大差异.事实上,这种差异正是不同类型现实问题具有不同增长规律的反应.而本节课重在研究不同函数增长的差异.课程目标1.掌握常见增长函数的定义、图象、性质,并体会其增长的快慢.2.理解直线上升、对数增长、指数爆炸的含义以及三种函数模型的性质的比较,培养数学建模和数学运算等核心素养.数学学科素养1.数学抽象:常见增长函数的定义、图象、性质;2.逻辑推理:三种函数的增长速度比较;3.数学运算:由函数图像求函数解析式;4.数据分析:由图象判断指数函数、对数函数和幂函数;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结函数性质.重点:比较函数值得大小;难点:几种增长函数模型的应用.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。教学工具:多媒体。
新知探究我们知道,等差数列的特征是“从第2项起,每一项与它的前一项的差都等于同一个常数” 。类比等差数列的研究思路和方法,从运算的角度出发,你觉得还有怎样的数列是值得研究的?1.两河流域发掘的古巴比伦时期的泥版上记录了下面的数列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《庄子·天下》中提到:“一尺之锤,日取其半,万世不竭.”如果把“一尺之锤”的长度看成单位“1”,那么从第1天开始,每天得到的“锤”的长度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在营养和生存空间没有限制的情况下,某种细菌每20 min 就通过分裂繁殖一代,那么一个这种细菌从第1次分裂开始,各次分裂产生的后代个数依次是2,4,8,16,32,64,… ⑤4.某人存入银行a元,存期为5年,年利率为 r ,那么按照复利,他5年内每年末得到的本利和分别是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥
二、典例解析例4. 用 10 000元购买某个理财产品一年.(1)若以月利率0.400%的复利计息,12个月能获得多少利息(精确到1元)?(2)若以季度复利计息,存4个季度,则当每季度利率为多少时,按季结算的利息不少于按月结算的利息(精确到10^(-5))?分析:复利是指把前一期的利息与本金之和算作本金,再计算下一期的利息.所以若原始本金为a元,每期的利率为r ,则从第一期开始,各期的本利和a , a(1+r),a(1+r)^2…构成等比数列.解:(1)设这笔钱存 n 个月以后的本利和组成一个数列{a_n },则{a_n }是等比数列,首项a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12个月后的利息为10 490.7-10^4≈491(元).解:(2)设季度利率为 r ,这笔钱存 n 个季度以后的本利和组成一个数列{b_n },则{b_n }也是一个等比数列,首项 b_1=10^4 (1+r),公比为1+r,于是 b_4=10^4 (1+r)^4.
我们知道数列是一种特殊的函数,在函数的研究中,我们在理解了函数的一般概念,了解了函数变化规律的研究内容(如单调性,奇偶性等)后,通过研究基本初等函数不仅加深了对函数的理解,而且掌握了幂函数,指数函数,对数函数,三角函数等非常有用的函数模型。类似地,在了解了数列的一般概念后,我们要研究一些具有特殊变化规律的数列,建立它们的通项公式和前n项和公式,并应用它们解决实际问题和数学问题,从中感受数学模型的现实意义与应用,下面,我们从一类取值规律比较简单的数列入手。新知探究1.北京天坛圜丘坛,的地面有十板布置,最中间是圆形的天心石,围绕天心石的是9圈扇环形的石板,从内到外各圈的示板数依次为9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型号的女装上对应的尺码分别是38,40,42,44,46,48 ②3.测量某地垂直地面方向上海拔500米以下的大气温度,得到从距离地面20米起每升高100米处的大气温度(单位℃)依次为25,24,23,22,21 ③
二、典例解析例10. 如图,正方形ABCD 的边长为5cm ,取正方形ABCD 各边的中点E,F,G,H, 作第2个正方形 EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL ,依此方法一直继续下去. (1) 求从正方形ABCD 开始,连续10个正方形的面积之和;(2) 如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?分析:可以利用数列表示各正方形的面积,根据条件可知,这是一个等比数列。解:设正方形的面积为a_1,后续各正方形的面积依次为a_2, a_(3, ) 〖…,a〗_n,…,则a_1=25,由于第k+1个正方形的顶点分别是第k个正方形各边的中点,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25为首项,1/2为公比的等比数列.设{a_n}的前项和为S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10个正方形的面积之和为25575/512cm^2.(2)当无限增大时,无限趋近于所有正方形的面积和
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.4.3节《不同增长函数的差异》 是在学习了指数函数、对数函数和幂函数之后的对函数学习的一次梳理和总结。本节提出函数增长快慢的问题,通过函数图像及三个函数的性质,完成函数增长快慢的认识。既是对三种函数学习的总结,也为后续导数的学习做了铺垫。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1.了解指数函数、对数函数、幂函数 (一次函数) 的增长差异.2、经过探究对函数的图像观察,理解对数增长、直线上升、指数爆炸。培养学生观察问题、分析问题和归纳问题的思维能力以及数学交流能力;3、在认识函数增长差异的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学应用的意识,探索数学。 a.数学抽象:函数增长快慢的认识;b.逻辑推理:由特殊到一般的推理;
本节课选自《普通高中课程标准实验教科书数学必修1》5.6.2节 函数y=Asin(ωx+φ)的图象通过图象变换,揭示参数φ、ω、A变化时对函数图象的形状和位置的影响。通过引导学生对函数y=sinx到y=Asin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂、由特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法;通过对参数φ、ω、A的分类讨论,让学生深刻认识图象变换与函数解析式变换的内在联系。通过图象变换和“五点”作图法,正确找出函数y=sinx到y=Asin(ωx+φ)的图象变换规律,这也是本节课的重点所在。提高学生的推理能力。让学生感受数形结合及转化的思想方法。发展学生数学直观、数学抽象、逻辑推理、数学建模的核心素养。
本节课选自《普通高中课程标准数学教科书-必修一》(人教A版)第三章《函数的概念与性质》,本节课是第2课时,本节课主要学习函数的三种表示方法及其简单应用,进一步加深对函数概念的理解。课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.课程目标 学科素养A.在实际情景中,会根据不同的需要选择恰当的方法(解析式法、图象法、列表法)表示函数;B.了解简单的分段函数,并能简单地应用;1.数学抽象:函数解析法及能由条件求函数的解析式;2.逻辑推理:求函数的解析式;
课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.
本节课是新版教材人教A版普通高中课程标准实验教科书数学必修1第四章第4.5.1节《函数零点与方程的解》,由于学生已经学过一元二次方程与二次函数的关系,本节课的内容就是在此基础上的推广。从而建立一般的函数的零点概念,进一步理解零点判定定理及其应用。培养和发展学生数学直观、数学抽象、逻辑推理和数学建模的核心素养。1、了解函数(结合二次函数)零点的概念;2、理 解函数零点与方程的根以及函数图象与x轴交点的关系,掌握零点存在性定理的运用;3、在认识函数零点的过程中,使学生学会认识事物的特殊性与一般性之间的关系,培养数学数形结合及函数思想; a.数学抽象:函数零点的概念;b.逻辑推理:零点判定定理;c.数学运算:运用零点判定定理确定零点范围;d.直观想象:运用图形判定零点;e.数学建模:运用函数的观点方程的根;
客观世界中的各种各样的运动变化现象均可表现为变量间的对应关系,这种关系常常可用函数模型来描述,并且通过研究函数模型就可以把我相应的运动变化规律.课程目标1、能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数、幂函数、分段函数模型解决实际问题; 2、感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数、幂函数、分段函数模型在数学和其他学科中的重要性. 数学学科素养1.数学抽象:总结函数模型; 2.逻辑推理:找出简单实际问题中的函数关系式,根据题干信息写出分段函数; 3.数学运算:结合函数图象或其单调性来求最值. ; 4.数据分析:二次函数通过对称轴和定义域区间求最优问题; 5.数学建模:在具体问题情境中,运用数形结合思想,将自然语言用数学表达式表示出来。 重点:运用一次函数、二次函数、幂函数、分段函数模型的处理实际问题;难点:运用函数思想理解和处理现实生活和社会中的简单问题.