提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

人教版高中政治必修4世界的物质性精品教案

  • 人教版新课标小学数学四年级上册梯形说课稿

    1、找一找出示七巧板图,设疑:图中你能找出几个梯形?这个梯子最多能达到多高的高度?(见课件)2、拼一拼:①利用两个完全一样的梯形,拼出一种你熟悉的图形。②利用多种梯形图片,摆出一种最喜欢的图案。创设问题情境,深化思维层次,构建知识体系1、通过活动,培养学生创新意识和审美情趣,充分体现“玩中学,学中玩”的新课程理念。2、教会学生在活动中运用新知、拓展思维、加深认识,增强了学生的参与意识和主体意识。3、在拼摆中渗透转化思想,为梯形的面积推导作铺垫,构建新知学习的立体框架。五、交流评价,总结升华1、小结全课:谈谈你的收获及感想。2、集体评价:自评、互评自己在本课中的表现。完善知识结构,训练思维品质,升华发现能力①通过人性化语言,体现以人为本思想。②引入互动评价方法,交流活动感受,形成自我反馈机制。

  • 人教版新课标小学数学五年级上册密铺说课稿

    最富趣味的是荷兰艺术家埃舍尔,他到西班牙旅行参观时,对一种名为阿罕拉的建筑物有很深的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺了种类繁多、美仑美奂的马赛克图案。Escher用数日的时间复制了这些图案,并得到了启发,创造了各种并不局限于几何图案的密铺图案,这些图案包括人、青蛙、鱼、鸟、蜥蜴,甚至是他凭空想象的物体。他创作的艺术作品,结合数学与艺术,给人留下深刻的印象,更让人对数学产生了另一种看法。欣赏埃舍尔的艺术世界:2、动手创作。(小小设计师)看了大艺术家的作品,你现在是不是也有了创作的冲动?下面,请你选一种或几种完全一样的图形进行密铺,可以自己设计颜色,比一比,谁的设计更美观、更新颖。(交流,展示)四、总结:谈收获体会我们今天只是研究了一些规则图形的简单的密铺。生活中还有各种各样的密铺现象。同学们可以到生活中去观察,也可以上网浏览。

  • 人教版新课标小学数学五年级上册铺一铺说课稿

    密铺的历史背景1619年——数学家奇柏(J.Kepler)第一个利用正多边形铺嵌平面。1891年——苏联物理学家弗德洛夫(E.S.Fedorov)发现了十七种不同的铺砌平面的对称图案。 1924年——数学家波利亚(Polya)和尼格利(Nigeli)重新发现这个事实。最富趣味的是荷兰艺术家埃舍尔(M.C. Escher)与密铺。M.C. Escher于1898年生于荷兰。他到西班牙旅行参观时,对一种名为阿罕伯拉宫(Alhambra)的建筑有很深刻的印象,这是一种十三世纪皇宫建筑物,其墙身、地板和天花板由摩尔人建造,而且铺上了种类繁多、美轮美奂的马赛克图案。Escher 用数日复制了这些图案,并得到启发,创造了各种并不局限于几何图形的密铺图案,这些图案包括鱼、青蛙、狗、人、蜥蜴,甚至是他凭空想像的物体。他创造的艺术作品,结合了数学与艺术,给人留下深刻印象,更让人对数学产生另一种看法。

  • 人教版新课标小学数学五年级下册约分说课稿

    5.游戏活动:每人从信封袋中挑选一个自己最喜欢的分数卡片。(1)最简分数上讲台,和最简分数相同的分数起立。联系生活实际发散性思考。(2)从剩下的同学中找到自己的好朋友。帮最后两名同学找最简分数作朋友。判断并说明理由。按要求参加活动,综合考核学生判断最简分数和对分数进行约分的能力。创设生活情景,提供了一些现实的学习材料,把书本知识与学生的日常生活联系起来,使学生感受到数学来自生活,并不抽象;学好数学,为生活、生产服务,学数学真有价值。部分题目设计充满趣味性,把孩子拉入游戏之中,巩固本课的所有知识点。在引导学生积极观察、思考、联想、诱发学生的创新因素时,更应注意引导学生克服固定的思维模式,鼓励创造性地发现知识的规律和发表自己的独特见解。

  • 人教版新课标小学数学六年级上册折扣说课稿

    (教师要深入各个小组中,参与学生方案的制定,但教师不是决策者,决策权在学生手中。)【设计意图:练习设计围绕本节课的教学目标,具有层次性。同时,开放性练习的设计——采用小组合作,让学生设计购书方案,使学生进一步感受到生活中处处有数学,运用数学知识还能省钱,合理安排日常生活开支,培养了学生自觉应用数学的意识。】五、课堂总结。同学们,通过这节课的学习,你有什么感想?你们今天的表现都很出色。其实生活中还有许多问题需要我们用数学知识去发现、去思考、去探索,希望大家能做个有心人!教学设计自我评析:新课程标准指出:“数学源于生活、寓于生活、用于生活。教师应重视从学生的生活经验和以有的知识中学习数学和理解数学。”

  • 人教版新课标小学数学六年级上册利息说课稿

    (二)合作交流,探究新知出示例题。(小黑板)先全班同学读题,教师在解释说明题目中“存定期一年”表示什么意思。一般来说,存款主要分为定期、活期等储蓄方式。所谓活期存款是指储户可以随时提取的一种方式;定期存款是有一定期限的一种存款方式,定期存款又分为整存整取和零存整取等形式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年的等等。(让学生在议一议、说一说的基础上,说出自己是怎样想的,交流归纳对问题的认识,理解存款的定期、活期的年月限即时间,以及存款方式。)小丽存的是“定期一年”,即小丽在银行存的100元在一般情况下要在银行存一年,如果有特殊情况也可以提前提取。下面请同学们合作交流,思考如下几个问题。(出示投影片。)(1)你猜一猜,小丽把100元存入银行叫做什么?(本金)(2)你估算一下,小丽把100元存入银行,定期一年,全部取出,取出的钱会大于100元吗?为什么?

  • 主题教育阶段性总结讲稿

    聚焦关系群众切身利益的现实问题,精心组织实施就业优先政策、优化调整教育资源、强化医疗资源配置、完善社区养老服务、增建城市停车泊位、改造燃气供热旧管网等20项民心工程,不断增进民生福祉。目前,**将居民医保住院最高支付限额从18万元提高到25万元,大病保险各费用段报销比例提高5个百分点;失业保险金月发放标准提高80元;利用闲置空地等资源增建城市停车泊位2700余个,新建小区公共充电桩3100多台,完成燃气庭院管道改造110公里,切实把惠民生的事办实、暖民心的事办细、顺民意的事办好。二是群众诉求即接即办。市委主题教育领导小组办公室专门设立为民服务组,用好12345政务服务平台,建立接听受理、转办督促、回访评判的闭环系统,带着感情倾听群众诉求,对不能当场解答的第一时间挂单转办,督促相关部门研究解决,跟踪办理结果。今年4月以来,平台共受理诉求73.66万件,办结率99.99%,满意率98.71%。定期对平台受理的问题进行梳理汇总,对全市面上普遍性、集中性问题和群众关心关注的重点事项,分类归集形成问题台账,按照属事原则向相关部门反馈,推动从“解决一件事”向“解决一类事”转变。

  • 高校抓意识形态工作计划

    1.学校各级干部对意识形态工作的重视程度与首都高校意识形态领域面临的严峻形势不适应   北京作为国家首都,对外开放程度高,对外交往频繁,这为首都高校科学文化发展面向世界提供了有利条件。但同时,鱼龙混杂、泥沙俱下的情况也不断加剧,外来文化特别是敌对势力的渗透影响日趋复杂。在这方面,高校各级干部对意识形态工作的重视程度与面临的严峻形势仍不适应。

  • 学雷锋精神,创建文明校园说课稿

    雷锋精神是什么?这一环节是让学生用简单的词语或句子概括。通过这一活动,让学生概括出雷锋精神的内涵:像无私奉献、乐于助人、为人民服务、勤俭节约、尊老爱幼、勤奋好学、干一行爱一行、言行一致等等都是雷锋精神的体现。我们少年儿童是中国的未来和希望,雷锋精神的发扬和光大,创建文明校园的任务就落在他们的肩上,所以在这里我还设计了为发扬雷锋精神,创建文明校园“我该怎么做”这样的问题,目的就是让他们一起行动起来,学雷锋做好事,并制作了“荣誉”旗,奖励身边的好人好事。活动延伸:这里我设计了一个角色游戏活动——我要义卖献爱心,这个游戏学生们表现得非常积极,他们收集了自己不要的小文具或小玩具,将他们拿到集市上去卖,卖东西获得的钱,捐给王奶奶的孙女,因为王奶奶的孙女生病了,无钱治病。我觉得这个游戏使学生们懂得,一个人只要有爱心,只要愿意去帮助别人,无论什么方式都行,而且在游戏活动中孩子们体会到了帮助别人是一件多么多么快乐的事呀。

  • 教育质量专项调研报告_教育质量包括哪些方面

    通过这次调研活动,从整体上看,在学校的努力下,吴家小学教育教学重过程、重实效、重改革、重创新,中心校“提升教育教学质量工程”的文件精神得到了较好的贯彻落实,该校在“坚持和落实质量形成过程的管理”、“重视学科建设,加强校本教研”、“立足课堂,全面推进课堂教学改革”、“打造学校特色品牌,全面实施素质教育”、“注重校风教风建设,培养学生习惯和品质”、“加强三跳项目,全面提高教育教学质量”等方面呈现出不少的特色和亮点,彰显了学校的个性。xx教育教学工作综合评估中,20**年被评为进步奖。这样优异的成绩证明了该校很多管理经验值得学习和推广。

  • 教育质量专项调研报告_教育质量包括哪些方面

    一、调研的工作目标  通过调研,了解我学区小学段教育教学的基本情况,总结被调研学校的教育教学质量提升的经验、方法,查找教育教学过程中存在的问题,寻求破解我学区小学段教育教学质量提升瓶颈的方法和策略,改进学校管理措施,促进教育教学常规管理科学化、规范化、精细化,全面提升我校教育教学质量。  二、调研的基本情况  1. 选取样本学校。  本次调研,为了使样本校抽样具有代表性,结合我校的现状,调研工作在我中心小学中选取了具有代表性的吴家英里小学作为样本校。

  • 4月份国旗下讲话:牢固树立生命安全意识

    老师们、同学们!今天我讲话的题目是:牢固树立生命安全意识。百善文明为先,万思安全是重。确保学生的安全健康,不仅关系到每个家庭的生活幸福,更关系到整个社会的稳定与祥和,保护学生安全,是学校、家庭和社会的共同责任。1996年国家教委、劳动部、公安部、交通部、铁道部、国家体委、卫生部联合发出通知,决定每年3月份的最后一周的星期一为全国中小学生安全教育日,每年确定一个主题。XX年3月30日是全国中小学生第十四个安全教育日,主题是“加强防灾减灾,创建和谐校园”。11年汶川地震的灾难让我们再次明白,生命的脆弱竟有如一只芦苇,稍不注意,它便会从你手中悄悄溜走。一位老师曾经对我讲述过这样一则交通安全事故:那是一个晴朗的日子,一个男孩骑着自行车,由于他骑得太快了,差一点儿就撞上了斑马路上的行人。行人劝他不要骑得那么快,可他毫不在意,继续骑他的“飞车”,在一个拐弯的地方,“飞车”男孩,倒在血泊中……其实我们要树立的生命安全意识并非只有交通安全,它还包括很多方面,如课间活动的安全、食品安全、交友安全、网络安全,等等。专家指出,通过安全教育,提高中小学生的自我保护能力,80%的意外伤害将可以避免。可见,关爱生命,创建和谐校园,最重要的是树立安全意识,加强安全防范。

  • 精编不忘立德树人初心教师个人心得体会参考范文

    一、敬岗爱业,要热爱教育事业,要对教学工作有“鞠躬尽瘁”的决心  既然我们选择了教育事业,就要对自己的选择无怨无悔,不计名利,积极进取,开拓创新,无私奉献,力求干好自己的本职工作,尽职尽责地完成每一项教学工作,不求最好,但求更好,不断的挑战自己,超越自己。  二、加强政治学习,不断提高政治素养  自己应该系统地学习《义务教育法》、《中华人们共和国教师法》、《教师资格条例》等法律法规文件,按照《中小学教师职业道德规范》严格要求自己,奉公守法,恪尽职守,遵守社会公德,忠诚人民的教育事业,为人师表。

  • 高教版中职数学基础模块下册:6.3《等比数列》教学设计

    课题序号6-3授课形式讲授与练习课题名称等比数列课时2教学 目标知识 目标理解并掌握等比数列的概念,掌握并能应用等比数列的通项公式及前n项和公式。能力 目标通过公式的推导和应用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、分析问题、解决问题的一般思路和方法 。素质 目标通过对等比数列知识的学习,培养学生细心观察、认真分析、正确总结的科学思维习惯和严谨的学习态度。教学 重点等比数列的概念及通项公式、前n项和公式的推导过程及运用。教学 难点对等比数列的通项公式与求和公式变式运用。教学内容 调整无学生知识与 能力准备数列的概念课后拓展 练习 习题(P.21): 3,4.教学 反思 教研室 审核

  • 高教版中职数学基础模块下册:9.5《柱、锥、球及其简单组合体》教学设计

    课题序号 授课班级 授课课时2授课形式 教学方法 授课章节 名称9.5柱、锥、球及其组合体使用教具 教学目的1、使学生认识柱、锥、球及其组合体的结构特征,并能运用这些特征描述生活中简单物体的结构。 2、让学生了解柱、锥、球的侧面积和体积的计算公式。 3、培养学生观察能力、计算能力。

  • 高教版中职数学基础模块下册:6.2《等差数列》教学设计

    系(部)医药授课教师戚文撷授课班级11(5),11(6)班授课类型新授课授课时数2课时授课周数第一周授课日期2012.2.15授课地点 教室课题第六章数列分课题§6.2 等差数列教学目标1. 理解等差数列的概念,掌握等差数列的通项公式;掌握等差中项的概念. 2. 逐步灵活应用等差数列的概念和通项公式解决问题. 3.等差数列的前N项之和 . 4.培养学生分析、比较、归纳的逻辑思维能力. . 2. 3.教学重点等差数列的概念及其通项公式. 教学难点等差数列通项公式的灵活运用. 教学方法情境教学法、自主探究式教学方法教学器材及设备黑板、粉笔复习提问提问内容姓名成绩1.数列的定义? 答: 2. 数列的通项公式? 答: 板书设计 §6.2.1等差数列的概念 1. 1.等差数列的定义 公差:d 2.常数列 3.等差数列的通项公式 an=a1+(n-1)d. 等差数列的前n 项和公式: 例题 练习作业布置习题第1,2题.课后小结本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.我再整个教学中强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.

  • 【高教版】中职数学拓展模块:1.2《正弦型函数》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15

  • 【高教版】中职数学拓展模块:1.3《正弦定理与余弦定理》教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40

  • 【高教版】中职数学拓展模块:3.1《排列与组合》优秀教学设计

    教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 3.1 排列与组合. *创设情境 兴趣导入 基础模块中,曾经学习了两个计数原理.大家知道: (1)如果完成一件事,有N类方式.第一类方式有k1种方法,第二类方式有k2种方法,……,第n类方式有kn种方法,那么完成这件事的方法共有 = + +…+(种). (3.1) (2)如果完成一件事,需要分成N个步骤.完成第1个步骤有k1种方法,完成第2个步骤有k2种方法,……,完成第n个步骤有kn种方法,并且只有这n个步骤都完成后,这件事才能完成,那么完成这件事的方法共有 = · ·…·(种). (3.2) 下面看一个问题: 在北京、重庆、上海3个民航站之间的直达航线,需要准备多少种不同的机票? 这个问题就是从北京、重庆、上海3个民航站中,每次取出2个站,按照起点在前,终点在后的顺序排列,求不同的排列方法的总数. 首先确定机票的起点,从3个民航站中任意选取1个,有3种不同的方法;然后确定机票的终点,从剩余的2个民航站中任意选取1个,有2种不同的方法.根据分步计数原理,共有3×2=6种不同的方法,即需要准备6种不同的飞机票: 北京→重庆,北京→上海,重庆→北京,重庆→上海,上海→北京,上海→重庆. 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 15*动脑思考 探索新知 我们将被取的对象(如上面问题中的民航站)叫做元素,上面的问题就是:从3个不同元素中,任取2个,按照一定的顺序排成一列,可以得到多少种不同的排列. 一般地,从n个不同元素中,任取m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,时叫做选排列,时叫做全排列. 总结 归纳 分析 关键 词语 思考 理解 记忆 引导学生发现解决问题方法 20

  • 【高教版】中职数学拓展模块:3.2《二项式定理》教学设计

    一、定义:  ,这一公式表示的定理叫做二项式定理,其中公式右边的多项式叫做的二项展开式;上述二项展开式中各项的系数 叫做二项式系数,第项叫做二项展开式的通项,用表示;叫做二项展开式的通项公式.二、二项展开式的特点与功能1. 二项展开式的特点项数:二项展开式共(二项式的指数+1)项;指数:二项展开式各项的第一字母依次降幂(其幂指数等于相应二项式系数的下标与上标的差),第二字母依次升幂(其幂指数等于二项式系数的上标),并且每一项中两个字母的系数之和均等于二项式的指数;系数:各项的二项式系数下标等于二项式指数;上标等于该项的项数减去1(或等于第二字母的幂指数;2. 二项展开式的功能注意到二项展开式的各项均含有不同的组合数,若赋予a,b不同的取值,则二项式展开式演变成一个组合恒等式.因此,揭示二项式定理的恒等式为组合恒等式的“母函数”,它是解决组合多项式问题的原始依据.又注意到在的二项展开式中,若将各项中组合数以外的因子视为这一组合数的系数,则易见展开式中各组合数的系数依次成等比数列.因此,解决组合数的系数依次成等比数列的求值或证明问题,二项式公式也是不可或缺的理论依据.

上一页123...358359360361362363364365366367368369下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!