导语:讲话稿是人们在特定场合发表讲话的文稿,是应用写作研究的重要文体之一。以下是小编整理的爱护国旗国旗下讲话稿,供各位阅读和借鉴。爱护国旗国旗下讲话稿 尊敬的老师、亲爱的同学们:早上好!今天我在国旗下讲话的题目是什么呢?看——就是我身后这面飘扬的五星红旗。自从踏进小学的校门,我们每个周一都要集合在国旗下,举行庄严而又隆重的升国旗仪式。望着冉冉升起的国旗,听着铿锵有力的国歌,我们为这庄严的时刻而激动,为肃然于国旗前而自豪。国旗是一个国家的标志,她象征着革命,象征着团结,象征着胜利,是伟大的中华人民共和国神圣不可侵犯的尊严。面对这神圣的国旗,我们崇敬它、仰慕它,更要爱护它。那具体应该怎样做呢?首先,应该认真参加每周的升旗仪式,并注意做到以下几点:1.升旗前,走到升旗台的位置时,要抬头挺胸,队伍要左右对齐,前后对正。
在学生需要以爱护环境为题进行国旗下的讲话时,需要准备好演讲稿,那么都有哪些好的演讲稿呢?下面是小编分享给大家的爱护环境国旗下讲话稿,希望对大家有帮助。爱护环境国旗下讲话稿篇1 尊敬的老师,亲爱的同学们:大家好!今天是6月5日—世界环保日。今天我要演讲的题目是《保护环境卫生,人人有责》。在我们的日常生活中,生活环境是十分重要的,但人们常常不重视这一方面。使清澈见底的小溪变成了肮脏的水沟;郁郁葱葱的大森林变成了落光头发的老爷爷;鸟语花香的村庄变成了山洪爆发的地方……这一切都是由人类的一举一动所造成的。前几日,我到广场上骑自行车,发现不远处的草坪中有许多的白色垃圾,真是不计其数!可见我们的环保意识还不够强。说小一点儿,影响该地区的形象;说大一点儿,这是影响我们国家的形象啊!作为一名少先队员,作为一名小学生,我们也应该保护环境,从我做起,从小事做起,从力所能及的事情做起。当别人随手扔下垃圾的时候,你会去捡起;当别人践踏草坪的时候,你会去阻止;当别人在破坏树木的时候,你会去教育……
敬爱的老师们、亲爱的同学们:大家早上好!今天我国旗下演讲的题目是《携手爱地球》。今年的4月22日是第44个世界地球日。我国国土资源部确定今年的地球日主题为珍惜地球资源转变发展方式促进生态文明共建美丽中国。地球是我们人类赖以生存的家园,我们每一个人都理应爱护她,保护她,珍惜她,可是我们是不是都这样做了呢?当阴雨天气连续不断时,当我们从羽绒服、棉袄直接过渡到体恤衫时,当听到云南连续三年遭受大旱时,当地震与各类灾害频频发生时,我们都在不约而同地思考着同一个问题:我们的地球到底怎么了?随着气候变暖成为全世界共同关注的问题,绿色环保、低碳生活已经成为当今社会关注的话题。绿色生活也已成为当今社会最流行、最时尚的词汇。
今天是3月3日,也是“全国爱耳日”。从XX年开始,到今年已经是第十五个“全国爱耳日”了,今年的主题是:“爱耳护耳,健康听力”。。下面聘才小编为大家整理了一些关于XX年爱耳日国旗下讲话,欢迎大家阅读。亲爱的老师们、小朋友们:早上好!今天,我给大家带来了一个谜语,想请你们猜一猜是什么?“东一片,西一片,隔座山头不见面。猜不着,你再听我说一遍。”就在我们每个人的身体上。小朋友们很聪明,马上就猜到了答案——是我们身体上的耳朵。可别小瞧了这耳朵,刚刚要不是它帮助了你,你就听不到我说的话,也猜不出谜语了。耳朵对每一个人来说都是那样的重要。有了耳朵,我们知道了别人的想法;有了耳朵,我们听到了世界上各种各样美妙的声音。清脆的鸟叫声,悦耳的歌曲声,让我们的生活变得那样的幸福和美好。其实,耳朵除了能让我们听到声音,它还有一个很大的本领呢:就是保持我们身体的平衡。瞧吧!耳朵对于我们是多么的重要啊!
【学习目标】1.知识与技能:知道氧气的制取及检验方法,复习巩固氧气的相关性质。2.过程与方法:通过“探究能使带火星木条复燃所需氧气的最低体积分数”的探究性学习,学习科学探究的基本方法。3.情感态度与价值观:提高实验设计的能力和合作意识,复习巩固相关的基本操作,培养学习化学的兴趣。【学习重点】氧气的实验室制取操作步骤和性质检验。【学习难点】实验操作过程中的注意事项。【课前准备】《精英新课堂》:预习学生用书的“早预习先起步”。《名师测控》:预习赠送的《提分宝典》。情景导入 生成问题1.复习引入:实验室用高锰酸钾制取氧气的反应原理是什么?操作步骤有哪些?2.明确学习目标,由学生对学习目标进行解读。合作探究 生成能力阅读课本P45~P46的内容。提出问题:实验室加热高锰酸钾制取氧气的实验中,使用了哪些仪器?哪部分是气体发生装置?哪部分是气体收集装置?为什么可用排水法收集气体?讨论交流:结合化学实验基本操作和氧气的性质讨论归纳。
近代学习心理学的信息加工理论认为:熟悉程度过低的刺激,不易激发起主动探究、操作的行为。因此,在本次活动的选材和设计上,都努力确保幼儿对乐曲有充分的冗余度(熟悉程度)。《摇篮曲》是幼儿所熟悉的,小班时也欣赏过与本次活动选用的教材所类似的摇篮曲。德国作曲家勃拉姆斯于1868年创作的《摇篮曲》,乐曲采用大调式,3/4拍子,简单的主题充满了温和安详的情绪,表现了母亲对孩子深深的爱。《威风凛凛进行曲》这首进行曲因为它非常形象,非常有感染力,所以现在已经为许多国家军队仪式所采用。乐曲速度较快,是大调式2/4拍。它分三个部分,表现了热烈欢快的气氛和辉煌、庄严、壮丽的场面。“进行曲”音乐形象鲜明,节奏明显,在日常生活中幼儿也有精神饱满地列队、踏步、做操、开运动会等的体会,同时也具有一定的生活经验和感受音乐的经验,遵循以幼儿经验为基本出发点。
一、认识说课的实质说课是指教师以现代教育理念为指导,在精心备课的基础上,面对同行或教学研究人员,采用口头语言或相关辅助手段,阐述某学科课程或某具体课程的教学设计及其依据的教学研究过程(李崇爱,孟应周,2011)。简单而言,说课就是教师对“教什么”、“怎么教”、“为什么这么教”等问题进行阐述。这样做的目的,一方面可以展现一个教师的教育理论修养、教学组织能力和口头表达能力,另一方面可以帮助教师优化教学设计,反思教学行为,分享教学经验。
(2)这样的例子很多,如,有的同学利用自己掌握的计算机知识制造黑客程序,破坏校园网的正常运行;有的生产者和经营者制假售假,坑蒙拐骗;有的人身上存在着拜金主义倾向;等等。从上面的课堂探究中,我们认识到:(1)出现道德冲突的原因:生活变化很快,不断加快的城镇化进程;新型产业的崛起与传统产业的衰落,使众多劳动者不得不面对新的择业问题;网络的普及,使越来越多的人进入社会交行的新天地;等等。在急剧变化的社会生活中,人们在告别传统牛活方式的同时,也常常遭遇思想道德下的“两难选择”。(2)解决道德冲突的重要途径解决道德冲突的一个重要的途径,就是在社会主义精神文明建设的实践中,加强自身知识文化修养和思想道德修养,不断追求更高的思想道德目标。◇课堂练习:道德冲突()①是经济生活日益发展的反映②不存在于现实生活中③是一个永远无法解决的问题④是社会生活急剧变化的产物
老师们、同学们:早上好!再过5天就是12月20日,这是澳门回归祖国九周年的纪念日。澳门割让,说明“国家落后就要挨打”,澳门回归,昭示着“祖国强大才有尊严”。所以今天我和大家聊聊爱国的话题,题目是“成才先成人,爱国先爱校”。先给大家讲一个真实的故事:上个世纪九十年代初,XX市成贤街小学转来了一个黄头发、蓝眼睛的美国小学生。当星期一升旗的时候,他质问班主任老师,为什么不升美国的国旗? 老师告诉他说,这是在中国,应当升中国的国旗!到了下一个星期一再举行升国旗仪式的时候,这个美国小学生手上却拿了一面美国的国旗,当同学们高唱《中华人民共和国国歌》的时候,他唱的也是美国的国歌。这位美国小学生强烈的爱国行为,深深地打动着在场的每一位老师和同学的心。大家对他的行为赞不绝口,这个故事当时在XX市也被传为佳话。同学们,一个身在异国他乡的美国小学生,他是那样执着地热爱着自己的国家,难道不值得我们每个中国小朋友深思吗?不值得我们人大附小的每位同学深思吗?
由②得y=23x+23.在同一直角坐标系中分别作出一次函数y=3x-4和y=23x+23的图象.如右图,由图可知,它们的图象的交点坐标为(2,2).所以方程组3x-y=4,2x-3y=-2的解是x=2,y=2.方法总结:用画图象的方法可以直观地获得问题的结果,但不是很准确.三、板书设计1.二元一次方程组的解是对应的两条直线的交点坐标;2.用图象法解二元一次方程组的步骤:(1)变形:把两个方程化为一次函数的形式;(2)作图:在同一坐标系中作出两个函数的图象;(3)观察图象,找出交点的坐标;(4)写出方程组的解.通过引导学生自主学习探索,进一步揭示了二元一次方程和函数图象之间的对应关系,很自然的得到二元一次方程组的解与两条直线的交点之间的对应关系.进一步培养了学生数形结合的意识,充分提高学生数形结合的能力,使学生在自主探索中学会不同数学知识间可以互相转化的数学思想和方法.
2. 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量x(千克)的一次函数.当所挂物体的质量为1千克时弹簧长15厘米;当所挂物体的质量为3千克时,弹簧长16厘米.写出y与x之间的函数关系式,并求当所挂物体的质量为4千克时弹簧的长度.答案: 当x=4是,y= 3. 教材例2的再探索:我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶,如图所示, , 分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.当时间t等于多少分钟时,我边防快艇B能够追赶上A。答案:直线 的解析式: ,直线 的解析式: 15分钟第五环节课堂小结(2分钟,教师引导学生总结)内容:一、函数与方程之间的关系.二、在解决实际问题时从不同角度思考问题,就会得到不一样的方法,从而拓展自己的思维.三、掌握利用二元一次方程组求一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式: ;2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b,进而得到一次函数的表达式.
探究活动8(教材第72页):“结合生活事例,谈谈你在面对复杂事物时是如何分析和解决矛盾的?”这一探究活动是在学生还不了解主次矛盾的原理时,让他们回忆自己在生活中有没有遇到过面对许多矛盾时是如何解决的经历。比如,每天面对很多作业,先做哪门课作业后做哪门作业,你是如何考虑的?在学校面对学习、体育运动和社会工作,你是怎么安排的?在生活中,你遇到这样的情况都是怎样解决的?通过探究活动,使学生弄清主次矛盾的原理,学会用矛盾分析法分析问题。探究活动9(教材第73页):“你在生活中是如何分析具体问题的?”这一探究活动,强调的是“你”在生活中是如何运用分析法分析具体问题的,要紧紧围绕学生这一中心,首先强调具体问题具体分析的方法非常重要,这是马克思主义的一个原则,是马克思主义的活的灵魂。引导学生主动运用这种分析方法分析看待自己,分析看待社会。可以组织学生进行讨论、交流,还可以让学生撰写小论文,写出自己运用这种分析方法分析了哪些具体问题,有哪些感受。
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )A.内切 B.相交 C.外切 D.外离解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.答案:B2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 . 解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.答案:4x+3y-2=03.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.若b=6,则a=±4;若b=-6,则a无解.故所求圆方程为(x±4)2+(y-6)2=36.答案:D4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 . 解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圆心为 1/(1+λ),2/(1+λ) ,半径为1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.
切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.
一、导入新课教养,是表现在行为方式中的道德修养状况,是社会影响、家庭教育、学校教育、个人修养的结果。中国是文明古国,礼仪之邦,关于“教养”,中国古时《三字经》就提到了,指的是人从小就应该习得的一种规矩,待人接物处事时的一种敬重态度。今天我们学习利哈乔夫的《论教养》,进一步理解教养的核心内涵以及学习如何做一个有教养的人。【教学提示】设计学生感兴趣的话题,引发学生的思考和关注,为学生更好地学习本文奠定基础。二、教学新课目标导学一:初读课文,理清层次1.指导学生朗读课文。朗读指导:抓住议论性的句子,把握作者的观点,理解观点和材料之间的关系。2.小组讨论。给课文划分层次,理清作者思路,理解议论文结构的一般特点。明确:第一部分(1—2):开门见山,引入论题——良好的教养。第二部分(3—12):把有无教养的表现进行对比,指出教养的思想核心是尊重他人。第三部分(13—17):剖析优雅风度,指出一切优雅风度的基础其实是一种关照态度。
俗话说:“严师出高徒。”虽然教官们对每一个动作都有严格的要求,但是我们有的动作做的还不规范,不到位。这就要求我们必须严格要求,刻苦练习,争取把每一个动作都做好,用实际行动回报教官们的一片苦心。 不管前方是风雨,还是险滩,我们将与教官们走完这精彩的_天。让岁月珍藏一份经典的画卷。保存一份完美的回忆。我们坚信_天后的我们将会更完美。让我们用心去呼唤,让暴风雨来得更猛烈些吧!我们已经作了最充分的准备,用自己坚强的意志去挑战,去适应,去完美这_天的精彩而又刺激,艰苦而又快乐的生活。
煤的价格为400元/吨,生产1吨甲产品除需原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生产甲产品x吨,乙产品m吨,公司获得的总利润为y元.(1)写出m与x的关系式;(2)写出y与x的函数关系式.(不要求写自变量的取值范围)解析:(1)因为矿石的总量一定,当生产的甲产品的数量x变化时,那么乙产品的产量m将随之变化,m和x是动态变化的两个量;(2)题目中的等量关系为总利润y=甲产品的利润+乙产品的利润.解:(1)因为4m+10x=300,所以m=150-5x2.(2)生产1吨甲产品获利为4600-10×200-4×400-400=600(元);生产1吨乙产品获利为5500-4×200-8×400-500=1000(元).所以y=600x+1000m.将m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法总结:根据条件求一次函数的关系式时,要找准题中所给的等量关系,然后求解.
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;