提供各类精美PPT模板下载
当前位置:首页 > Word模板 > 教育教学 > 课件教案> 圆与圆的位置关系教学设计人教A版高中数学选择性必修第一册
  • 收藏模板
    下载模板
  • 模板信息
  • 更新时间:2023-10-27
  • 字数:约5606字
  • 页数:约8页
  • 格式:.docx
  • 推荐版本:Office2016及以上版本
  • 售价:5 金币 / 会员免费

您可能喜欢的文档

  • 直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    直线与圆的位置关系教学设计人教A版高中数学选择性必修第一册

    切线方程的求法1.求过圆上一点P(x0,y0)的圆的切线方程:先求切点与圆心连线的斜率k,则由垂直关系,切线斜率为-1/k,由点斜式方程可求得切线方程.若k=0或斜率不存在,则由图形可直接得切线方程为y=b或x=a.2.求过圆外一点P(x0,y0)的圆的切线时,常用几何方法求解设切线方程为y-y0=k(x-x0),即kx-y-kx0+y0=0,由圆心到直线的距离等于半径,可求得k,进而切线方程即可求出.但要注意,此时的切线有两条,若求出的k值只有一个时,则另一条切线的斜率一定不存在,可通过数形结合求出.例3 求直线l:3x+y-6=0被圆C:x2+y2-2y-4=0截得的弦长.思路分析:解法一求出直线与圆的交点坐标,解法二利用弦长公式,解法三利用几何法作出直角三角形,三种解法都可求得弦长.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交点A(1,3),B(2,0),故弦AB的长为|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.设两交点A,B的坐标分别为A(x1,y1),B(x2,y2),则由根与系数的关系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的长为√10.解法三圆C:x2+y2-2y-4=0可化为x2+(y-1)2=5,其圆心坐标(0,1),半径r=√5,点(0,1)到直线l的距离为d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦长为("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦长|AB|=√10.

  • 用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(1)教学设计人教A版高中数学选择性必修第一册

    二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.

  • 用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    用空间向量研究直线、平面的位置关系(2)教学设计人教A版高中数学选择性必修第一册

    跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.

  • 圆的一般方程教学设计人教A版高中数学选择性必修第一册

    圆的一般方程教学设计人教A版高中数学选择性必修第一册

    情境导学前面我们已讨论了圆的标准方程为(x-a)2+(y-b)2=r2,现将其展开可得:x2+y2-2ax-2bx+a2+b2-r2=0.可见,任何一个圆的方程都可以变形x2+y2+Dx+Ey+F=0的形式.请大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲线是不是圆?下面我们来探讨这一方面的问题.探究新知例如,对于方程x^2+y^2-2x-4y+6=0,对其进行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因为任意一点的坐标 (x,y) 都不满足这个方程,所以这个方程不表示任何图形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通过恒等变换为圆的标准方程,这表明形如x2+y2+Dx+Ey+F=0的方程不一定是圆的方程.一、圆的一般方程(1)当D2+E2-4F>0时,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)为圆心,1/2 √(D^2+E^2 "-" 4F)为半径的圆,将方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)当D2+E2-4F=0时,方程x2+y2+Dx+Ey+F=0,表示一个点(-D/2,-E/2)(3)当D2+E2-4F0);

  • 圆的标准方程教学设计人教A版高中数学选择性必修第一册

    圆的标准方程教学设计人教A版高中数学选择性必修第一册

    (1)几何法它是利用图形的几何性质,如圆的性质等,直接求出圆的圆心和半径,代入圆的标准方程,从而得到圆的标准方程.(2)待定系数法由三个独立条件得到三个方程,解方程组以得到圆的标准方程中三个参数,从而确定圆的标准方程.它是求圆的方程最常用的方法,一般步骤是:①设——设所求圆的方程为(x-a)2+(y-b)2=r2;②列——由已知条件,建立关于a,b,r的方程组;③解——解方程组,求出a,b,r;④代——将a,b,r代入所设方程,得所求圆的方程.跟踪训练1.已知△ABC的三个顶点坐标分别为A(0,5),B(1,-2),C(-3,-4),求该三角形的外接圆的方程.[解] 法一:设所求圆的标准方程为(x-a)2+(y-b)2=r2.因为A(0,5),B(1,-2),C(-3,-4)都在圆上,所以它们的坐标都满足圆的标准方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圆的标准方程是(x+3)2+(y-1)2=25.

  • 查看更多相关Word文档

圆与圆的位置关系教学设计

本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习圆与圆的位置关系。

学生在初中的几何学习中已经接触过圆与圆的位置关系,上节已经学习了直线与圆的位置关系,因此本节课是对已学内容的深化何延伸;另一方面,本节课对于后面学习直线与圆锥曲线的位置关系等内容又是一个铺垫,具有承上启下的地位。坐标法不仅是研究几何问题的重要方法,而且是一种广泛应用于其他领域的重要数学方法。通过坐标系,把点和坐标、曲线和方程联系起来,实现了形和数的统一。

课件教案

课程目标

学科素养

A.掌握圆与圆的位置关系及判定方法.

B.能根据圆的方程判断圆与圆的位置关系.

C.能综合应用圆与圆的位置关系解决问题.

1.数学抽象:圆与圆的位置关系

2.逻辑推理:判断圆与圆的位置关系

3.数学运算:判断圆与圆的位置关系

4.数学建模:圆和圆的方程解决实际问题

重点:圆与圆的位置关系及判定方法

难点:综合应用圆与圆的位置关系解决问题

多媒体

教学过程

教学设计意图

核心素养目标

一、情境导学

日食是一种天文现象,在民间称此现象为天狗食日。日食只在月球与太阳呈现合的状态时发生。日食分为日偏食、日全食、日环食、全环食。

我们将月亮与太阳抽象为圆,观察到的这些圆在变化的过程中位置关系是怎样的?

前面我们运用直线的方程,圆的方程研究了直线与圆的位置关系,现在我们类比上述研究方法,运用圆的方程,通过定量计算研究圆与圆的位置关系。

二、探究新知

圆与圆的位置关系的判定方法

1.几何法:

圆O1:(x-x1)2+(y-y1)2=(r1>0),圆O2:(x-x2)2+(y-y2)2=(r2>0),

两圆的圆心距d=|O1O2|=,则有

位置

关系

外离

外切

相交

内切

内含






d与r1,r2的

关系

d>r1+r2

d=r1+r2

|r1-r2|

d=|r1-r2|

d<|r1-r2|

2.代数法:圆O1:x2+y2+D1x+E1y+F1=0(-4F1>0),圆O2:x2+y2+D2x+E2y+F2=0(-4F2>0),两圆的方程联立得方程组,则有

方程组解的情况

2组

1组

0组

两圆的公共点

2个

1个

0个

两圆的位置关系

相交

外切或内切

外离或内含

1. 判断下列两圆的位置关系:

①(x+2)2+(y-2)2=1与(x-2)2+(y-5)2=16.

②x2+y2+6x-7=0与x2+y2+6y-27=0.

解:①根据题意得,两圆的半径分别为r1=1和r2=4,两圆的圆心距

d==5.

因为d=r1+r2,所以两圆外切.

②将两圆的方程化为标准方程,得(x+3)2+y2=16,x2+(y+3)2=36,

故两圆的半径分别为r1=4和r2=6.

两圆的圆心距

d==3,因为|r1-r2|

三、典例解析

例1 已知圆C1:x2+y2-2ax-2y+a2-15=0(a>0),圆C2:x2+y2-4ax-2y+4a2=0(a>0).试求a为何值时,两圆C1,C2的位置关系为:

(1)相切;(2)相交;(3)外离;(4)内含?

思路分析:求出圆心距,与两半径的和或差比较求出a的值.

解:圆C1,C2的方程,经配方后可得

C1:(x-a)2+(y-1)2=16,

C2:(x-2a)2+(y-1)2=1,

∴圆心C1(a,1),C2(2a,1),半径r1=4,r2=1.

∴|C1C2|==a.

(1)当|C1C2|=r1+r2=5,即a=5时,两圆外切;

当|C1C2|=r1-r2=3,即a=3时,两圆内切.

(2)当3<|C1C2|<5,即3

(3)当|C1C2|>5,即a>5时,两圆外离.

(4)当|C1C2|<3,即0

判断两圆的位置关系的两种方法

(1)几何法:利用两圆半径的和或差与圆心距作比较,得到两圆的位置关系;

(2)代数法:把两圆位置关系的判定完全转化为代数问题,转化为方程组的解的组数问题.

跟踪训练1 若两圆x2+y2=a与x2+y2+6x-8y-11=0内切,则a的值为 .

解析:∵x2+y2=a表示一个圆,∴a>0.

两圆的圆心、半径长分别为(0,0),与(-3,4),6.

由于两圆内切,则=|-6|,

解得a=121或a=1.

答案:121或1

例2已知圆C1:x2+y2+6x-4=0和圆C2:x2+y2+6y-28=0.

(1)求两圆公共弦所在直线的方程及弦长;

(2)求经过两圆交点且圆心在直线x-y-4=0上的圆的方程.

思路分析:(1)两圆方程相减求出公共弦所在直线方程,再根据半径、弦心距、弦长的关系求出弦长.

(2)可求出两圆的交点坐标,结合圆心在直线x-y-4=0上求出圆心坐标与半径,也可利用圆系方程求解.

解:(1)设两圆交点为A(x1,y1),B(x2,y2),则A,B两点坐标是方程组的解.

①-②,得x-y+4=0.

∵A,B两点坐标都满足此方程,

∴x-y+4=0即为两圆公共弦所在直线的方程.

又圆C1的圆心(-3,0),r=,

C1到直线AB的距离为d=,

∴|AB|=2=2=5,

即两圆的公共弦长为5.

(2)(方法1)解方程组

得两圆的交点A(-1,3),B(-6,-2).

设所求圆的圆心为(a,b),因圆心在直线x-y-4=0上,故b=a-4.

则,

解得a=,故圆心为,-,半径为.

故圆的方程为(x-)2+(y+)2=,

即x2+y2-x+7y-32=0.

(方法2)设所求圆的方程为x2+y2+6x-4+λ(x2+y2+6y-28)=0(λ≠-1),

其圆心为(-,-),代入x-y-4=0,解得λ=-7.

故所求圆的方程为x2+y2-x+7y-32=0.

相交弦及圆系方程问题的解决

1.求两圆的公共弦所在直线的方程的方法:将两圆方程相减即得两圆公共弦所在直线方程,但必须注意只有当两圆方程中二次项系数相同时,才能如此求解,否则应先调整系数.

2.求两圆公共弦长的方法:一是联立两圆方程求出交点坐标,再用距离公式求解;二是先求出两圆公共弦所在的直线方程,再利用半径长、弦心距和弦长的一半构成的直角三角形求解.

3.已知圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0相交,则过两圆交点的圆的方程可设为x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).

跟踪训练1 两圆相交于两点A(1,3)和B(m,-1),两圆圆心都在直线x-y+c=0上,则m+c的

值为 .

解析:由题意知直线AB与直线x-y+c=0垂直,

∴kAB1=-1.即=-1,得m=5,∴AB的中点坐标为(3,1).

AB的中点在直线x-y+c=0上,

∴3-1+c=0,∴c=-2,∴m+c=5-2=3.

答案:3

例3求与圆x2+y2-2x=0外切且与直线x+y=0相切于点M(3,-)的圆的方程.

思路分析:设圆的方程,利用两圆外切和直线与圆相切建立方程组求得.

解:设所求圆的方程为(x-a)2+(y-b)2=r2(r>0),

由题知所求圆与圆x2+y2-2x=0外切,

则=r+1.①

又所求圆过点M的切线为直线x+y=0,

故.② =r.③

解由①②③组成的方程组得a=4,b=0,r=2或a=0,b=-4,r=6.

故所求圆的方程为(x-4)2+y2=4或x2+(y+4)2=36.

变式探究1 将本例变为“求与圆x2+y2-2x=0外切,圆心在x轴上,且过点(3,- )的圆的方程”,如何求?

解:因为圆心在x轴上,

所以可设圆心坐标为(a,0),设半径为r,

则所求圆的方程为(x-a)2+y2=r2,

又因为与圆x2+y2-2x=0外切,且过点(3,-),

所以 解得

所以圆的方程为(x-4)2+y2=4.

又因为与圆x2+y2-2x=0外切,且过点(3,-),

所以 解得

所以圆的方程为(x-4)2+y2=4.

变式探究2将本例改为“若圆x2+y2-2x=0与圆x2+y2-8x-8y+m=0相外切”,试求实数m的值.

解:圆x2+y2-2x=0的圆心为A(1,0),半径为r1=1,

圆x2+y2-8x-8y+m=0的圆心为B(4,4),

半径为r2=.因为两圆相外切,

所以=1+,解得m=16.

通过具体的情景,帮助学生回顾初中几何中已学的圆与圆的位置关系,同时类比直线与圆的位置关系的研究方法。

通过典例解析,帮助学生进一步熟悉两种基本方法,判断圆与圆的位置关系。发展学生数学运算,数学抽象和数学建模的核心素养。

在典例分析和练习中掌握判断圆与圆位置关系的方法,即:代数法与几何法。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。

通过圆与圆位置关系的综合问题,提升学生数学建模,数形结合,及方程思想,发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。

三、达标检测

1.两圆x2+y2-1=0和x2+y2-4x+2y-4=0的位置关系是( )

A.内切 B.相交 C.外切 D.外离

解析:圆x2+y2-1=0表示以O1(0,0)点为圆心,以R1=1为半径的圆.

圆x2+y2-4x+2y-4=0表示以O2(2,-1)点为圆心,以R2=3为半径的圆.

∵|O1O2|=,∴R2-R1<|O1O2|

∴圆x2+y2-1=0和圆x2+y2-4x+2y-4=0相交.

答案:B

2.圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦所在的直线方程是 .

解析:两圆的方程相减得公共弦所在的直线方程为4x+3y-2=0.

答案:4x+3y-2=0

3.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程为( )

A.(x-4)2+(y-6)2=16 B.(x4)2+(y-6)2=16

C.(x-4)2+(y-6)2=36 D.(x4)2+(y-6)2=36

解析:设所求圆心坐标为(a,b),则|b|=6.由题意,得a2+(b-3)2=(6-1)2=25.

若b=6,则a=4;若b=-6,则a无解.故所求圆方程为(x4)2+(y-6)2=36.

答案:D

4.若圆C1:x2+y2=4与圆C2:x2+y2-2ax+a2-1=0内切,则a等于 .

解析:圆C1的圆心C1(0,0),半径r1=2.圆C2可化为(x-a)2+y2=1,即圆心C2(a,0),半径r2=1,若两圆内切,需|C1C2|==2-1=1.解得a=1. 答案:1

5. 已知两个圆C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直线l:x+2y=0,求经过C1和C2的交点且和l相切的圆的方程.

解:设所求圆的方程为x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.

所以圆心为,

半径为,

即.

解得λ=1,舍去λ=-1,圆x2+y2=4显然不符合题意,故所求圆的方程为x2+y2-x-2y=0.

通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。


最新课件教案文档
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • 公司2024第一季度意识形态工作联席会议总结

    公司2024第一季度意识形态工作联席会议总结

    一是要把好正确导向。严格落实主体责任,逐条逐项细化任务,层层传导压力。要抓实思想引领,把理论学习贯穿始终,全身心投入主题教育当中;把理论学习、调查研究、推动发展、检视整改等有机融合、一体推进;坚持学思用贯通、知信行统一,努力在以学铸魂、以学增智、以学正风、以学促干方面取得实实在在的成效。更加深刻领会到******主义思想的科学体系、核心要义、实践要求,进一步坚定了理想信念,锤炼了政治品格,增强了工作本领,要自觉运用的创新理论研究新情况、解决新问题,为西北矿业高质量发展作出贡献。二是要加强应急处事能力。认真组织开展好各类理论宣讲和文化活动,发挥好基层ys*t阵地作用,加强分析预警和应对处置能力,提高发现力、研判力、处置力,起到稳定和引导作用。要坚决唱响主旋律,为“打造陕甘片区高质量发展标杆矿井”、建设“七个一流”能源集团和“精优智特”新淄矿营造良好的舆论氛围。三是加强舆情的搜集及应对。加强职工群众热点问题的舆论引导,做好舆情的收集、分析和研判,把握时、度、效,重视网上和网下舆情应对。

  • 关于2024年上半年工作总结和下半年工作计划

    关于2024年上半年工作总结和下半年工作计划

    二是深耕意识形态。加强意识形态、网络舆论阵地建设和管理,把握重大时间节点,科学分析研判意识形态领域情况,旗帜鲜明反对和抵制各种错误观点,有效防范处置风险隐患。积极响应和高效落实上级党委的决策部署,确保执行不偏向、不变通、不走样。(二)全面深化党的组织建设,锻造坚强有力的基层党组织。一是提高基层党组织建设力量。压实党建责任,从政治高度检视分析党建工作短板弱项,有针对性提出改进工作的思路和办法。持续优化党建考核评价体系。二是纵深推进基层党建,打造坚强战斗堡垒。创新实施党建工作模式,继续打造党建品牌,抓实“五强五化”党组织创建,广泛开展党员教育学习活动,以实际行动推动党建工作和经营发展目标同向、部署同步、工作同力。三是加强高素质专业化党员队伍管理。配齐配强支部党务工作者,把党务工作岗位作为培养锻炼干部的重要平台。

  • XX区民政局党支部开展主题教育工作情况总结报告

    XX区民政局党支部开展主题教育工作情况总结报告

    二要专注于解决问题。根据市委促进经济转型的总要求,聚焦“四个经济”和“双中心”的建设,深入了解基层科技工作、学术交流、组织建设等方面的实际情况,全面了解群众的真实需求,解决相关问题,并针对科技工作中存在的问题,采取实际措施,推动问题的实际解决。三要专注于急难愁盼问题。优化“民声热线”,推动解决一系列基层民生问题,努力将“民声热线”打造成主题教育的关键工具和展示平台。目前,“民声热线”已回应了群众的8个政策问题,并成功解决其中7个问题,真正使人民群众感受到了实质性的变化和效果。接下来,我局将继续深入学习主题教育的精神,借鉴其他单位的优秀经验和方法,以更高的要求、更严格的纪律、更实际的措施和更好的成果,不断深化主题教育的实施,展现新的风貌和活力。

  • 交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    交通运输局在巡回指导组主题教育阶段性工作总结推进会上的汇报发言

    今年3月,市政府出台《关于加快打造更具特色的“水运XX”的意见》,提出到2025年,“苏南运河全线达到准二级,实现2000吨级舶全天候畅行”。作为“水运XX”建设首战,谏壁闸一线闸扩容工程开工在即,但项目开工前还有许多实际问题亟需解决。结合“到一线去”专项行动,我们深入到谏壁闸一线,详细了解工程前期进展,实地察看谏壁闸周边环境和舶通航情况,不断完善施工设计方案。牢牢把握高质量发展这个首要任务,在学思践悟中开创建功之业,坚定扛起“走在前、挑大梁、多做贡献”的交通责任,奋力推动交通运输高质量发展持续走在前列。以学促干建新功,关键在推动高质量发展持续走在前列。新时代中国特色社会主义思想着重强调立足新发展阶段、贯彻新发展理念、构建新发展格局,推动高质量发展,提出了新发展阶段我国经济高质量发展要坚持的主线、重大战略目标、工作总基调和方法论等,深刻体现了这一思想的重要实践价值。

  • XX区文旅体局2023年工作总结 及2024年工作安排

    XX区文旅体局2023年工作总结 及2024年工作安排

    三、2024年工作计划一是完善基层公共文化服务管理标准化模式,持续在公共文化服务精准化上探索创新,围绕群众需求,不断调整公共文化服务内容和形式,提升群众满意度。推进乡镇(街道)“114861”工程和农村文化“121616”工程,加大已开展活动的上传力度,确保年度目标任务按时保质保量完成。服务“双减”政策,持续做好校外培训机构审批工作,结合我区工作实际和文旅资源优势,进一步丰富我市义务教育阶段学生“双减”后的课外文化生活,推动“双减”政策走深走实。二是结合文旅产业融合发展示范区,全力推进全域旅游示范区创建,严格按照《国家全域旅游示范区验收标准》要求,极推动旅游产品全域布局、旅游要素全域配置、旅游设施全域优化、旅游产业全域覆盖。

今日更新Word
  • 精选高中生期末评语

    精选高中生期末评语

    1、该生学习态度端正 ,能够积极配合老师 ,善于调动课堂气氛。 能够积极完成老师布置的任务。学习劲头足,听课又专注 ,做事更认 真 ,你是同学们学习的榜样。但是,成绩只代表昨天,并不能说明你 明天就一定也很优秀。所以,每个人都应该把成绩当作自己腾飞的起 点。2、 你不爱说话 ,但勤奋好学,诚实可爱;你做事踏实、认真、为 人忠厚 ,是一个品行端正、有上进心、有良好的道德修养的好学生。在学习上,积极、主动,能按时完成老师布置的作业,经过努力 ,各 科成绩都有明显进步,你有较强的思维能力和学习领悟力,学习也有 计划性,但在老师看来,你的潜力还没有完全发挥出来,学习上还要有持久的恒心和顽强的毅力。

  • “四零”承诺服务创建工作总结

    “四零”承诺服务创建工作总结

    (二)坚持问题导向,持续改进工作。要继续在提高工作效率和服务质量上下功夫,积极学习借鉴其他部门及xx关于“四零”承诺服务创建工作的先进经验,同时主动查找并着力解决困扰企业和群众办事创业的难点问题。要进一步探索创新,继续优化工作流程,精简审批程序,缩短办事路径,压缩办理时限,深化政务公开,努力为企业当好“保姆”,为群众提供便利,不断适应新时代人民群众对政务服务的新需求。(三)深化内外宣传,树立良好形象。要深入挖掘并及时总结作风整顿“四零”承诺服务创建工作中形成的典型经验做法,进一步强化内部宣传与工作交流,推动全市创建工作质效整体提升。要面向社会和公众庄严承诺并积极践诺,主动接受监督,同时要依托电台、电视台、报纸及微信、微博等各类媒体大力宣传xx队伍作风整顿“四零”承诺服务创建工作成果,不断扩大社会知情面和群众知晓率。

  • 2024年度工作计划汇编(18篇)

    2024年度工作计划汇编(18篇)

    1.市政基础设施项目5项,总建设里程2.13km,投资概算2.28亿元。其中,烔炀大道(涉铁)工程施工单位已进场,项目部基本建成,正在办理临时用地、用电及用水等相关工作;中铁佰和佰乐(巢湖)二期10KV外线工程已签订施工合同;黄麓镇健康路、纬四路新建工程均已完成清单初稿编制,亟需黄麓镇完成图审工作和健康路新建工程的前期证件办理;公安学院配套道路项目在黄麓镇完成围墙建设后即可进场施工。2.公益性建设项目6项,总建筑面积15.62万㎡,投资概算10.41亿元。其中,居巢区职业教育中心新建工程、巢湖市世纪新都小学扩建工程已完成施工、监理招标挂网,2月上旬完成全部招标工作;合肥职业技术学院大维修三期已完成招标工作,近期签订施工合同后组织进场施工;半汤疗养院净化和医用气体工程已完成招标工作;半汤疗养院智能化工程因投诉暂时中止;巢湖市中医院(中西医结合医院)新建工程正在按照既定计划推进,预计4月中下旬挂网招标。

  • 驻村工作队2024年第一季度工作总结汇编(4篇)

    驻村工作队2024年第一季度工作总结汇编(4篇)

    三是做大做强海产品自主品牌。工作队于xx年指导成立的冬松村海产品合作社,通过与消费帮扶平台合作,在工作队各派出单位、社会团体、个人支持下,已获得逾xx万元销售额。2022年底工作队推动合作社海产品加工点扩建的工作方案已获批,待资金下拨后将正式启动扩建工作。四是积极助企纾困,带动群众增收致富。工作队利用去年建立的xx镇产业发展工作群,收集本地企业在产品销售、技术、人力、资金、运营、用地等方面的需求,并加大xx支持乡村振兴力度,xx助理赴各村委开展多场xx政策支持乡村振兴宣讲活动,本季度有x万元助农贷款获批,xx万贷款正在审批中。在壮大既有产业的同时,完善联农带农机制,一方面鼓励企业雇用本地农户就业,另一方面计划与本地农户签订长期收购合同,让农民种得放心、种得安心,带动当地群众共同致富。

  • 主题教育总结常用提纲大全

    主题教育总结常用提纲大全

    第一,主题教育是一次思想作风的深刻洗礼,初心传统进一步得到回归。第二,主题教育是一次沉疴积弊的集中清扫,突出问题进一步得到整治。第三,主题教育是一次强化为民服务的生动实践,赤子之情进一步得到提振。第四,主题教育是一次激发创业担当的有利契机,发展层次进一步得到提升。2.第一,必须提领思想、武装思想。第二,必须聚焦问题、由表及里。第三,必须领导带头、以上率下。第四,必须务实求实、认真较真。3.一是抬高政治站位,坚持大事大抓。二是坚持思想领先,狠抓学习教育。三是突出问题导向,深入整改纠治。四是坚持领导带头,发挥表率作用。4.一是立足“早”字抓筹划。二是着眼“活”字抓学习。三是围绕“统”字抓协调。5.一是形势所需。二是任务所系。三是职责所在。四是制度所定。6.一要提升认识。二要积极作为。三要密切协作。

  • 主题教育专题读书班结班总结讲话

    主题教育专题读书班结班总结讲话

    第二,要把调查研究贯穿始终,实干担当促进发展。开展好“察实情、出实招”“破难题、促发展”“办实事、解民忧”专项行动,以强化理论学习指导发展实践,以深化调查研究推动解决发展难题。领导班子成员要每人牵头XX个课题开展调查研究,XX月底前召开调研成果交流会,集思广益研究对策措施。各部门、各单位要制定调研计划,通过座谈访谈、问卷调查、统计分析等方式开展调查研究,解决工作实际问题,帮助基层单位和客户解决实际困难。第三,要把检视问题贯穿始终,廉洁奉公树立新风。认真落实公司主题教育整改整治工作方案要求,坚持边学习、边对照、边检视、边整改,对标对表xxx新时代中国特色社会主义思想,深入查摆不足,系统梳理调查研究发现的问题、推动发展遇到的问题、群众反映强烈的问题,结合巡视巡察、审计和内外部监督检查发现的问题,形成问题清单。