活动准备: *多媒体制作 *各式玩具若干 *录音机、磁带活动流程:一、故事讲述 引起兴趣(通过故事,让宝宝积累交换的方法。)师:宝宝们,今天侯老师给你们讲个故事。(边操作多媒体,讲述故事。)提问:小兔篮子里原来只有萝卜,后来怎么又有青菜和蘑菇了。 小兔是用了什么好办法换到青菜、蘑菇的? 二、实践操作 获取经验(尝试经验迁移,在实践操作中获取交换法。)1、小白兔换到了许多自己喜欢的东西,真高兴。 今天带来了许多礼物送给我们的小朋友,想不想要?每个宝宝上来选一份,好吗?(自由选择)
二、 活动目的:1. 让幼儿知道花儿好看我不摘的道理。2. 培养 幼儿良好的行为习惯意识。3. 发展幼儿的口语表达能力。三、 活动准备:大树一棵,树上开满鲜花。注:鲜花是活动的,可以任意摘下或贴上,鲜花若干。
二、活动准备 1.童话故事(附后)的电脑课件。 2.立体环境:一棵大树、树洞、树桩(小树杆内有水)、草地、小河、平衡木。 3.材料:小石子、水箱(池塘)、铁钩、救生圈、磁铁、透明胶、树叶、塑料瓶子、竹棒、绳子、船、浮板、地板胶。 4.头饰:小熊、小猴、小鹿、小羊、啄木鸟各三个。 三、活动过程1.借助童话故事,把幼儿引入一个充满问题的世界。 (1)在茂密的树木里,生活着许多动物。你猜,都有些什么动物呢?(激发幼儿的兴趣) (2)有一天,小动物在树木里玩,你看他们发生了什么事情? (3)结合电脑课件,教师有表情地讲述童话故事,然后提问:树木里有什么动物?它们遇到了什么困难?
1、图9.6“南昆铁路示意图”掌握南昆铁路起止点、支线、途经地区、铁路线附近的矿产资源(云南的磷矿、贵州的煤矿、广西的铝矿等);南昆铁路使西南区南连北海、防城港、湛江、钦州等港,成为西南区通往沿海地区最便捷的出海通道,使西南地区物资出海路程缩短了600千米,对西南区的发展具有十分重要的经济、政治、战略意义。2、图9.10“西南三省一市和广西主要铁路分布图”本图展现了西南三省一市和广西的主要铁路分布,要求重点掌握本区内的环状铁路——成渝-川黔-贵昆-成昆线,新建的南昆线、内昆线,以及宝成线(联系西北区),襄渝线、湘黔线和湘桂-黔桂线(联系中南区),枝柳线(联系中南区和华北区)等区际铁路,昆河线等国际铁路及重要铁路枢纽。3、图9.11“西藏自治区交通图”西藏自治区是我国目前唯一没有正式通铁路的省级行政区,读图后要能掌握联系拉萨的四大入藏(川藏、青藏、新藏、滇藏)公路及正在建设的青藏铁路。
2.培养幼儿自主运动能力。 3.发展幼儿钻,爬,跳,平衡等基本活动能力。 活动准备:垫子圈滑板竹梯体操棒沙包玩具轮胎若干 活动流程: 创设环境:师生共同布置-->调动身心:做准备操-->基本活动:分散活动 -->放松活动:收拾器械-->集中活动-->分散活动 活动过程: 一、设环境: 1. 小动物来和我们一起锻炼身体,看那些小动物来了?(1号小狗,2号小乌龟,3号小兔,4号小猴)
学习活动:新建小区一、活动目标: 1、根据不同的画面进行讲述,并列出相应的算式,从而感知加减法算式表达的数量关系。 2、培养幼儿积极的思维能力,发展思维的灵活性。3、积极探索数学活动,乐于讲述探索过程。二、活动准备:1、教具:七座房子、三幅画、数字1-6、符号 、-、=。2、人手三幅图片,笔、鞭炮6串、自制金牌、银牌若干。
第一条:合同的主体: 甲方:深圳**物业管理有限公司 (以下简称甲方)乙方:(以下简称乙方)第二条:合同宗旨及原则:本合同经双方友好协商,本着平等互利等价有偿的原则,就乙方对甲方管辖的 提供日常保洁服务,协商如下。第三条:合同的范围本合同规定的服务范围、作业内容及清扫周期以《深圳市建筑物清洁保养质量标准》、《物业“五级”清洁卫生服务标准》及《清洁服务标准作业指导书》为准;清洁服务标准作业指导书由甲方提供,乙方按照上述二标一书要求认真执行。第四条:合同履行期限:本合同____及____自____年____月____日至____年____月____日止,服务期限为____年。第五条:合同双方的责任:一、甲方权力和义务:1.按合同约定向乙方支付保洁服务费。2.无偿为乙方提供仅限于服务区域内保洁工作所需用的水、电。3.指派专人负责对乙方保洁工作质量及时监督检查,发现质量问题及时要求乙方整改,直至达到符合服务质量标准。4.教育保洁工作人员遵守甲方物业管辖区域内的各项服务管理制度,爱护甲方物业服务区域内所有公共设施设备。
本合同依据中华人民共和国法律、《深圳经济特区土地管理条例》和《深圳经济特区商品房产管理规定》制定。 第一条 甲方经市府国土局批准,取得位于深圳市 用地面积 平方米的土地使用权。 地块编号: 使用年期 年,自 年 月 日起至 年 月 日止。甲方在上述土地兴建楼宇,系定名为 ,由甲方预售。 第二条 乙方自愿向甲方定购上述楼宇的第 幢 号(第 层)。建筑面积 平方米,土地面积/平方米、(其中:基底分摊 平方米、公用分摊 平方米、其他 平方米)。第三条 甲方定于 年 月 日交付乙方使用。 如遇下列特殊原因可延期交付使用,但不得超过 天: 1.人力不可抗拒的自然灾害; 2.施工中遇到异常困难及重大技术问题不能及时解决; 3.其他非甲方所能控制的因素。 上述原因必须凭深圳市有关主管部门的证明文件为依据,方能延期交付使用。
(一)观图激趣、设疑导入 出示课件的第一张幻灯片。师:老师这里有三道题哪位同学会做?1、已知路程和时间,怎样求速度?2、已知总价和数量,怎样求单价?3、已知工作总量和工作时间,怎样求工作效率?生1:速度=路程÷时间。生2:单价=总价÷数量。生3:工作效率=工作总量÷工作时间。师:同学们可真棒!这节课我们就来研究这些数量间的一些规律和特征。你们准备好了吗?生:准备好了!(板书:成正比例的量)【设计意图】引发学生学习的兴趣,唤起学生已有的只是经验,更好地进行新旧知识的结合,也有利于引导学生发现数量关系内在的规律。(二)探究新知(PPT课件出示例1)文具店有一种铅笔,销售的数量与总价的关系如下表。 数量/支12345678…总价/元3.5710.51417.52124.528…观察上表,回答下面的问题。(1)表中有哪两种量?(2)总价是怎样随着数量的变化而变化的?(3)相应的总价与数量的比分别是多少?比值是多少?1.探究数量与总价两个量之间的关系。师:仔细观察这张表格,它为我们提供了哪些数学信息?生:给我们提供了文具店销售彩带的数量是1,2,3,4,5,6,7,8米,总价分别是:3.5, 7,10.5,14,17.5,21,24.5,28元。师:表中有哪两种量?生:有数量和总价两种量。师:总价是怎样随着数量的变化而变化的?生:总价是随数量的增加而增加的。师:相应的总价与数量的比分别是多少?比值是多少?生1:=3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5 =3.5生2:相对应的总价和数量的比的比值是一定的。师:总价与数量的比值表示什么?
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.1两角和与差的余弦公式与正弦公式. *创设情境 兴趣导入 问题 我们知道,显然 由此可知 介绍 播放 课件 质疑 了解 观看 课件 思考 引导 启发学生得出结果 0 10*动脑思考 探索新知 在单位圆(如上图)中,设向量、与x轴正半轴的夹角分别为和,则点A的坐标为(),点B的坐标为(). 因此向量,向量,且,. 于是 ,又 , 所以 . (1) 又 (2) 利用诱导公式可以证明,(1)、(2)两式对任意角都成立(证明略).由此得到两角和与差的余弦公式 (1.1) (1.2) 公式(1.1)反映了的余弦函数与,的三角函数值之间的关系;公式(1.2)反映了的余弦函数与,的三角函数值之间的关系. 总结 归纳 仔细 分析 讲解 关键 词语 思考 理解 记忆 启发引导学生发现解决问题的方法 25
教 学 过 程教师 行为学生 行为教学 意图 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点*巩固知识 典型例题 例6 一艘船以每小时36海里的速度向正北方向航行(如图1-9).在A处观察到灯塔C在船的北偏东方向,小时后船行驶到B处,此时灯塔C在船的北偏东方向,求B处和灯塔C的距离(精确到0.1海里). 图1-9 A 解因为∠NBC=,A=,所以.由题意知 (海里). 由正弦定理得 (海里). 答:B处离灯塔约为海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和(图1-10),在平地上选择适合测量的点C,如果,m,m,试计算隧道AB的长度(精确到m). 图1-10 解 在ABC中,由余弦定理知 =. 所以 m. 答:隧道AB的长度约为409m. 例8 三个力作用于一点O(如图1-11)并且处于平衡状态,已知的大小分别为100N,120N,的夹角是60°,求F的大小(精确到1N)和方向. 图1-11 解 由向量加法的平行四边形法则知,向量表示F1,F2的合力F合,由力的平衡原理知,F应在的反向延长线上,且大小与F合相等. 在△OAC中,∠OAC=180°60°=120°,OA=100, AC=OB=120,由余弦定理得 OC= = ≈191(N). 在△AOC中,由正弦定理,得 sin∠AOC=≈0.5441, 所以∠AOC≈33°,F与F1间的夹角是180°–33°=147°. 答:F约为191N,F与F合的方向相反,且与F1的夹角约为147°. 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.2正弦型函数. *创设情境 兴趣导入 与正弦函数图像的做法类似,可以用“五点法”作出正弦型函数的图像.正弦型函数的图像叫做正弦型曲线. 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 5*巩固知识 典型例题 例3 作出函数在一个周期内的简图. 分析 函数与函数的周期都是,最大值都是2,最小值都是-2. 解 为求出图像上五个关键点的横坐标,分别令,,,,,求出对应的值与函数的值,列表1-1如下: 表 001000200 以表中每组的值为坐标,描出对应五个关键点(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲线联结各点,得到函数在一个周期内的图像(如图). 图 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 15
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 我们知道,在直角三角形(如图)中,,,即 ,, 由于,所以,于是 . 图1-6 所以 . 介绍 播放 课件 质疑 了解 观看 课件 思考 学生自然的走向知识点 0 10*动脑思考 探索新知 在任意三角形中,是否也存在类似的数量关系呢? c 图1-7 当三角形为钝角三角形时,不妨设角为钝角,如图所示,以为原点,以射线的方向为轴正方向,建立直角坐标系,则 两边取与单位向量的数量积,得 由于设与角A,B,C相对应的边长分别为a,b,c,故 即 所以 同理可得 即 当三角形为锐角三角形时,同样可以得到这个结论.于是得到正弦定理: 在三角形中,各边与它所对的角的正弦之比相等. 即 (1.7) 利用正弦定理可以求解下列问题: (1)已知三角形的两个角和任意一边,求其他两边和一角. (2)已知三角形的两边和其中一边所对角,求其他两角和一边. 详细分析讲解 总结 归纳 详细分析讲解 思考 理解 记忆 理解 记忆 带领 学生 总结 20
教 学 过 程教师 行为学生 行为教学 意图时间 *揭示课题 1.3正弦定理与余弦定理. *创设情境 兴趣导入 在实际问题中,经常需要计算高度、长度、距离和角的大小,这类问题中有许多与三角形有关,可以归结为解三角形问题,经常需要应用正弦定理或余弦定理. 介绍 播放 课件 了解 观看 课件 学生自然的走向知识点 0 5*巩固知识 典型例题 例6一艘船以每小时36海里的速度向正北方向航行(如图1-14).在A处观察灯塔C在船的北偏东30°,0.5小时后船行驶到B处,再观察灯塔C在船的北偏东45°,求B处和灯塔C的距离(精确到0.1海里). 解 因为∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B处离灯塔约为34.8海里. 例7 修筑道路需挖掘隧道,在山的两侧是隧道口A和B(图1-15),在平地上选择适合测量的点C,如果C=60°,AB = 350m,BC = 450m,试计算隧道AB的长度(精确到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的长度约为409m. 图1-15 引领 讲解 说明 引领 观察 思考 主动 求解 观察 通过 例题 进一 步领 会 注意 观察 学生 是否 理解 知识 点 40
5、交流。学生可能有按照长方体的表面积的计算方法计算的。交流时注意引导学生比较哪种方法最简便,同时明确在正方体表面积的计算公式中为什么要乘6。7、质疑问难。8、揭示表面积的含义:刚才我们在求做长方体和正方体纸盒至少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体和正方体6个面积的总面积,叫做它的表面积。(三)巩固练习,扩展应用。(10分)数学来源于生活,又服务于生活,学生学到的知识通过应用才能真正理解和掌握。1、书中的习题。15页练一练、17页1、5题。通过有目的的基本练习、巩固练习、综合练习,使学生进一步加深了对新知识的理解。强化了学生运用新知解决实际问题的能力,使学生形成了一定技能技巧。
师:非常正确。现在我们知道了表示方法,但是我们该怎么读呢?也就是说我们现在知道了怎么用数学符号去表示,或者说是会书写了。但是我们要说给别人听该怎么说呢?也就是该怎么读它呢?(正号!)正确。这两个符号在我们数学的术语里面又有了另外一个称呼,就是“+”在这里读着“正号”,“-”在这里读着“负号”。这个读法是数学里面规定的,是我们日常用语中的习惯读法。这里的+5,+6而不是我们所说的加上5,加上6,加是一个运算过程,而正号只是一个符号,它可以和数字组合在一起作为是整体的,是一个整体的数字,是不含运算的。同理,这里的-5,-6它也不是减去5,、减去6,而是一个-5、-6的数字。为了和我们的加号和减号相区分,所以我们就给了它另外一种读法。
一、教材分析长方体和正方体的表面积是人教版教材五年级下册第三单元第二章节的内容。本节课的地位和作用:这部分内容是在学生学习了长方体和正方体的认识以及掌握了长方形和正方形面积的计算方法的基础上进行教学。教材中各年级涉及到的内容如下:长方体和正方体的表面积这部分内容,是在学生认识并掌握了长方体和正方体特征的基础上教学的。教材为了使学生更好地建立表面积的概念,加强了动手操作,让每个学生拿一个长方体或正方体纸盒,沿着棱剪开,再展开,观察展开后的形状。并分别用“上”“下”“前”“后”“左”“右”标明6个面。这样,可以使学生把展开后每个面与展开前这个面的位置联系起来,更清楚地看出长方体相对的面的面积相等,以及每个面的长和宽与长方体的长、宽、高之间的关系,既让学生明确了表面积的含义,又为下面学习计算长方体和正方体的表面积做好了准备。
3.说教学重、难点依据数学课程标准,及对教材的认识,我确定了本节课的重点和难点。教学重点:掌握长方体和正方体的特征。教学难点:建立“立体图形”的空间概念,了解长方体、正方体的关系。二、说教法根据几何知识的教学特点、本节教学内容以及小学生空间观念薄弱的特点,我将采用以下教学方法。直观演示法:利用图片等手段进行直观演示,激发学生的学习兴趣;观察发现法:通过让学生观察长方体、正方体的一些实物发现新知,培养学生的观察概括能力;合作探究法:引导学生通过自主研究、合作讨论等活动形式来获取知识。同时运用多媒体辅助教学,使学生的观察能力、抽象概括能力逐步提高。三、说学法为了使学生较好地掌握长方体和正方体的特征,并逐步形成空间观念,除了让学生通过观察来认识长方体和正方体的特征以外,在观察实物的基础上,通过动手操作,看一看,摸一摸,数一数,量一量,做一做来学习新知,同时以此来激发学生的学习兴趣,调动学生的积极性。
本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算。这节课要在此基础上掌握体积的概念和常用的体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。这是下一步学习体积单位进率的基础,更是以后学习容积的基础。因此,长方体和正方体的体积计算必须掌握熟练。教学目标1、结合具体自作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。 2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。 3、培养学生数学的应用意识。 重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。 难点:理解体积公式的意义。
四、范例学习、理解领会例2 某校墙边有甲、乙两根木杆。已知乙木杆的高度为1.5m.(1)某一时刻甲木杆在阳光下的影子如图5-6所示,你能画出此时乙木杆的影子吗?(用线段表示影子)(2)在图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在(2)的情况下,如果测得甲、乙木杆的影子长分别为1.24m和1m,那么你能求出甲木杆的高度吗?学生画图、 实验、观察、探索。五、随堂练习课本随堂练习 学生观察、画图、合作交流。六、课堂总结本节课通过各种实践活动,促进大家对内容的理解,本课内容,要体会物体在太阳光下形成的不同影子,在操作中观察不 同时刻影子的方向和大小变化特征。在同一时刻,物体的影子与它们的高度成比 例.