提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

北师大版小学数学二年级上册《买衣服》说课稿

  • 北师大版小学数学四年级上册《加法结合律》说课稿

    学生虽然在此前的学习中,对四则运算中的一些性质和规律有感性的认识,但加法结合律毕竟是属于理性的总结和概括,比较抽象,学生不易理解和掌握。因此,教师在教学过程中,要利用学生已经掌握的知识,让学生独立解答,然后引导学生分析、比较不同的方法,并通过自己的举例发现规律,概括出相应的运算律。根据以上教材内容和结构的分析,考虑到学生已有的心理结构特征,我确定了如下教学目标:1、理解并掌握加法结合律,并能够用字母来表示加法结合律。2、经历探索加法结合律的过程,通过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算定律。3、在具体情境中体会应用加法结合律进行简便计算的实际意义,感受到加法结合律的价值,与日常生活的密切联系,形成一定得应用意识。重点:理解并掌握加法结合律,能用字母来表示加法结合律。难点:经历探索加法结合律的过程,发现并概括出运算定律。

  • 北师大版小学数学四年级上册《确定位置》说课稿

    一、设计理念结合新课标的要求,《确定位置》这一课,我主要体现了以下设计理念:1、遵循小学生的认知规律,实施“现实数学原理”,体现数学知识从感性认识上升到理性认识的认知过程。2、课堂教学中以学生为主体,注重知识的自然生成,培养学生学习数学的能力。3、课堂教学充分体现数学源于生活,用于生活,体现学习数学的价值。二、教材简析《确定位置》是北师大版四年级数学上册第5单元《方向与位置》的内容。本课主要通过用数对来表示和确定位置的学习,提高学生的空间观念,并建立初步的数形结合思想,对认识生活周围的环境有较大的作用。三、学情分析。四年级学生之前已经有“列、排”的初步认识,但对“数对”这样的抽象知识没有丝毫的基础。但是,四年级学生有一定的生活经验,因此,从生活现实出发,创设学生熟悉的教学情境,充分发挥学生的主体作用,就能实现本节课的教学目标。

  • 北师大版小学数学四年级上册《商不变的规律》说课稿

    一、说教学内容1.说教学内容的地位与作用《商不变的规律》是义务教育课程标准实验教科书数学四年级上册的内容。在此之前学生已经学过三位数除以两位数的除法,有了这些知识作为铺垫,学生能更直观深入地理解本节知识。同时,本节课的学习也为以后学习小数除法作了铺垫。2.说教学目标(1)知识与技能:能运用商不变的规律口算有关除法。(2)过程与方法:让学生经历探索的过程,学会并用类比迁移的方法探索新知,通过观察、分析、交流、合作总结被除数和除数同时发生变化,商不变的规律。培养学生观察、比较、猜想、概括以及发现规律、探索新知的能力。(3)情感、态度与价值观:引导学生经历探索过程,体验数学知识的探索性,体验发现乐趣,增强成功体验。3.说教学重难点教学重点:(1)引导学生自己发现规律,掌握规律;(2)通用简单的语言表述规律;(3)利用商不变的规律进行简便计算。

  • 北师大版小学数学四年级上册《卫星运行时间》说课稿

    二、学情分析学生在学习本课之前,已经熟练掌握了两位数乘两位数与三位数乘一位数的竖式计算方法,本节课是将已有知识迁移到两、三位数乘法的计算学习中。计算上难度不是很大,所以应该放手让学生自主探索计算方法。但学生可能会在估计积的范围和建立各种算法间内在联系上出现问题,特别是算法中出现的表格法要让学生建立与其他方法的联系上会比较难。三、教学目标1.能结合具体情境估计两、三位数乘法的积的范围。2.探索两、三位数乘法的计算方法,能正确计算,并乐于与同伴交流算法。3.培养计算兴趣和良好的计算习惯,提高利用乘法运算解决实际问题能力。三、教材处理在理解尊重教材的基础上,适当整合并创造性使用教材:1、在情境创设中加入翟志刚的视频图片。2、变基础练习试一试“先估后算“为”先算后估“。【课件出示】

  • 北师大版小学数学四年级上册《有多少名观众》说课稿

    今天我说课的题目是《有多少名观众》,下面我从说教材、说学情、说教学流程几个方面对本课的教学进行一下阐述:一、说教材1、说内容。《有多少名观众》是北师大版四年级上册第33至34页内容。2、教材简析。对较大数进行估计,先要把较大的数分成大体相同的几个部分,那么只要能估计出其中一部分的数量,就可以用乘法算出要估计的数量。教科书提出三个问题:1.讨论用什么策略估计体育场馆中人数;2.如何估计一个看台观众的人数;3.如何估算得到体育场可容纳的观众人数。4、说教学目标。知识与技能:能结合已有的知识,探索三位数乘两位数的计算方法,并能进行正确计算。过程与方法:引导学生经历数学信息的收集、问题的提出、问题的解决的全过程,培养学生应用数学知识解决实际问题的意识.

  • 北师大版小学数学六年级上册《圆的面积》说课稿2篇

    2.学法指导通过实例引入,引导学生关注身边的数学;在借助长方形面积公式来推导圆的面积公式的过程中,让学生通过观察、归纳、联想、转化等学习方法,动口、动手,动脑,培养学生学习的主动性和积极性。3.教学手段为了更好地展示数学的魅力,我结合多媒体辅助手段,充分地调动学生的感官,增加学习的形象感与趣味性,并且给学生留有足够的思考和交流的时间和空间,使学生成为课堂的主人。三、说教学过程1.创设问题情景,引入课题。出示课件让学生观察并说说从图中能发现什么数学信息,使学生在具体情境中了解圆面积的含义,体会到研究圆面积的必要性。2.探究思考,解决问题:估计圆的面积有多大。通过探究和思考使学生进一步体会到面积度量的含义,感受“化曲为直”的思想,同时培养学生的估计意识。

  • 北师大版小学数学六年级上册《观察的范围》说课稿

    3.制定教学目标根据教材内容、教材的编写意图和学生的认知规律,制定本节课的教学目标为:知识与技能:给合生活实际,经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,并能利用所学的知识解释生活中的一些现象。过程与方法:从熟悉的、有趣的生活背景中让学生感受观察范围的变化,通过观察、操作、想象等活动,发展学生的空间观念。情感、态度与价值观:体会数学与现实生活的联系,增强学习数学的兴趣以及与他人合作交流的意识。4.教材的重难点根据教材内容的地位、作用和学生已有知识经验的实际情况,制定本节课的重难点是:经历分别将眼睛、视线与观察的范围抽象为点、线、区域的过程,感受观察范围随观察点,观察角度的变化而改变,发展学生的空间观念,能解决日常生活中的一些现象。

  • 北师大版小学数学六年级上册《扇形统计图》说课稿

    一、教材分析:教材的地位和作用新课标教材中《数据处理》安排在小学一至六年级的各册教材中。在第一学段(一至三年级)中,学生将数据统计过程有所体验,学习一些简单的收集、整理和描述数据的方法;在第二学段(四至六年级)中,学生将经历简单的数据统计过程,进一步学习收集、整理和描述数据的方法,并根据数据分析的结果做出简单的判断与预测。在第二学段主要学习条形统计图、折线统计图、扇形统计图,主要使学生掌握各种统计图的优劣,经历运用数据描述信息、作出推断的过程,发展统计观念。有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到统计的实用价值。

  • 北师大版小学数学六年级上册《统计图的选择》说课稿

    一、教材分析1.教材的地位和作用本节教材是北师大版六年级数学上册第5章《数据的收集与整理》第3节的内容,这一章是《全日制义务教育数学课程标准(实验稿)》第三学段“统计与概率”部分的第一章,也是基础章节。它让学生经历数据的收集、整理、描述的过程,体会适当选择统计图表对描述实际问题的作用,为以后进一步学习统计的有关知识打下基础2.学情分析学生在此之前已经在小学阶段学习过有关统计图表的知识,对三种统计图也有了一定的认识和感知,会画三种统计图,但是对于究竟如何选取适当的统计图去说明一些具体实际问题还存在一定困难,所以本节内容主要是让学生对三种统计图各自的特点和优势有一定的认识。3.教材重难点根据对教材的研读和学生学情的分析,结合新课标对本节的要求,特将本节的重难点确定如下:

  • 北师大版初中八年级数学上册认识二元一次方程组说课稿2篇

    我们遇到的往往就是这样的方程组,我们要想比较简捷地把它解出来,就需要转化为同一个未知数系数相同或相反的情形,从而用加减消元法,达到消元的目的.请大家把解答过程写出来.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.将2?y代入①,得:3?x.根据上面几个方程组的解法,请同学们思考下面两个问题:(1)加减消元法解二元一次方程组的基本思路是什么?(2)用加减消元法解二元一次方程组的主要步骤有哪些?(由学生分组讨论、总结并请学生代表发言)[师生共析](1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.(2)用加减法解二元一次方程组的一般步骤是:①变形----找出两个方程中同一个未知数系数的绝对值的最小公倍数,然分别在两个方程的两边乘以适当的数,使所找的未知数的系数相等或互为相反数.②加减消元,得到一个一元一次方程.③解一元一次方程.

  • 北师大版初中八年级数学上册二次根式说课稿

    有意义,字母x的取值必须满足什么条件?设计意图:通过例题的讲解,使学生加深对所学知识的理解,避免一些常见错误。而变式练习设计,延续的例题的风格,一步一步,步步深入,本节课的教学难点就在学生的操作活动中迎刃而解了。对提高学生对所学知识的迁移能力和应用意识,激发好奇心和求知欲起到良好效果。(五)、巩固运用,提高认识1、通过基础训练让学生体验学习的成就感。2、应用拓展:增加难处,再次让学生联系以前的知识,增强学生的数学应用意识。(六)、总结评价,质疑问难这节课我们学习了什么?设计意图:学生共同总结,互相取长补短,学生在畅所欲言中对二次根式的认知得到进一步的巩固升华。五、板书设计.采用纲领式的板书,使学生有“话”可说,有“理”可循,在简单板书设计中使学生体会到数学的简洁美。

  • 北师大初中数学九年级上册几何问题及数字问题与一元二次方程1教案

    解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.

  • 北师大初中数学九年级上册几何问题及数字问题与一元二次方程2教案

    三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?

  • 北师大初中数学九年级上册利用一元二次方程解决面积问题2教案

    四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.

  • 北师大初中数学九年级上册用配方法求解简单的一元二次方程2教案

    (1) 你能解哪些特殊的一元二次方程?(2) 你会解下列一元二次方程吗?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0吗?你遇到的困难是什么?你能设法将这个方程转化成上面方程的形式吗?与同伴进行交流。活动二:做一做:填上适当的数,使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左边,常数项和一次项有什么关系解一元二次方程的思路是什么?活动三:例1、解方程:x2+8x-9=0你能用语言总结配方法吗?课本37页随堂练习课时作业:

  • 北师大初中数学九年级上册用因式分解法求解一元二次方程2教案

    【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

  • 北师大初中数学九年级上册营销问题及平均变化率问题与一元二次方程2教案

    5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?

  • 北师大初中数学九年级上册用配方法求解简单的一元二次方程1教案

    探究点二:用配方法解二次项系数为1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左边不是一个完全平方式,需将左边配方.解:移项,得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.开平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法总结:用配方法解一元二次方程时,应按照步骤严格进行,以免出错.配方添加时,记住方程左右两边同时加上一次项系数一半的平方.三、板书设计用配方法解简单的一元二次方程:1.直接开平方法:形如(x+m)2=n(n≥0)用直接开平方法解.2.用配方法解一元二次方程的基本思路是将方程转化为(x+m)2=n(n≥0)的形式,再用直接开平方法,便可求出它的根.3.用配方法解二次项系数为1的一元二次方程的一般步骤:(1)移项,把方程的常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)配方,方程两边都加上一次项系数一半的平方,把原方程化为(x+m)2=n(n≥0)的形式;(3)用直接开平方法求出它的解.

  • 北师大初中数学九年级上册用因式分解法求解一元二次方程1教案

    探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.

  • 北师大初中数学九年级上册营销问题及平均变化率问题与一元二次方程2教案

    5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?

上一页123...192021222324252627282930下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!