提供各类精美PPT模板下载
当前位置:首页 > Word文档 >

北师大版小学数学四年级上册《神奇的计算工具》说课稿

  • (新)部编人教版四年级上册《梅兰芳蓄须》说课稿

    三、说教学重难点:1.默读课文,把握课文的主要内容。2.了解京剧大师梅兰芳,说说他用了哪些办法拒绝为日本人演戏,在这个过程中经历了哪些危险和困难。3.体会句子所表达的深刻含义和思想感情。四、说教学方法: 科学合理的教学方法能使教学效果事半功倍,达到教与学的和谐完美统一。基于此,我采用的教法是阅读感悟法、讲授法、点拨法。讲授法教师可以系统地传授知识,充分发挥教师的主导作用。语文教学立足于读,读中感悟是学生自主学习的重要方法,因此在教学中,我会留下充分的时间让学生读文本、写批注、谈体会。 在学法上,我贯彻的指导思想是把“学习的主动权还给学生”,倡导“自主、探究”的学习方式,具体的方式就是通过默读把握课文的主要内容,通过圈点勾画体会人物的崇高形象。

  • (新)部编人教版四年级上册《牛和鹅》说课稿(一)

    二、说教学目标: 1.学会概括课文主要内容,抓住有关词句,揣摩人物的心情及心理活动。2.通过朗读感悟,了解课文蕴含的道理,认识看待周围的事物,从不同的角度出发就会得到不同的结果这个道理。三、说教学重难点:1.理解“它虽然把我们看得比它小,可我们实在比它强呀!”这句话的含义。2.朗读感悟课文,了解看待周围的事物,从不同的角度出发就会得到不同的结果。 3.体会童年的快乐、丰富多彩和课文中生动形象的描写。四、说教学方法: 《新课标》指出:“朗读是阅读教学中最重要、最基本的手段和方法之一,小学语文教学必须在朗读中训练语言文字,在朗读中理解课文,在朗读中发展思维和陶冶情操。”因此,本课我主要采用了“以读代讲”的教学方法,同时辅以“点拨法”等。 为了体现以学生为主,以自学为主,以训练为主,我采用“先学后教、当堂训练”的教学模式。引导学生在独立探究、自主学习的基础上,通过“读读、划划、 想想、说说、写写”的方法学习课文。

  • (新)部编人教版四年级上册《女娲补天》说课稿(一)

    (二)自主学习,合作探究研读第1自然段,感受当时环境的恶劣。1.整体感知当时环境的恶劣,引导:自从女娲创造了人类,大地上到处是欢歌笑语,人们一直过着快乐幸福的生活。但是,一天夜里,灾难发生了,自由读第一自然段,说说发生了什么?把相关的语句划出来。预计学生找到下面这句话:远远的天空塌下一大块,露出一个黑黑的大窟窿。地被震裂了,出现了一道道深沟。山冈上燃烧着熊熊大火,田野里到处是洪水。许多人被火围困在山顶上,许多人在水里挣扎。 2.齐读这个句子,说说,此时此刻,你的心里有什么感受?预计学生会说:可怕等。 3.是哪些词语让你觉得可怕呢?拿起笔用曲线画出来。预计学生会画出下列词语:黑黑的大窟窿,一道道深沟,熊熊大火,到处是洪水,围困,挣扎。随机出示课件。请大家默读这些词语,想象眼前出现了怎样的画面呢?预设学生能够想象:地上的人们,随时都有可能掉进深沟;有的人们被火围困;有些人正在洪水中挣扎,随时都有生命危险…… 4.在学生充分感受想象的基础上,引导:同学们,就带着这样的画面,带着这一副悲惨的景象,轻轻地读一读这个句子吧。男女学生轻声读。

  • (新)部编人教版四年级上册《爬天都峰》说课稿

    三、说教学重难点:1.教学在生活中会用要求会写的字,能够结合生活用会写的字造句。2.初步感受小女孩和老人互相从对方身上汲取力量的道理。四、说教学方法: 结合本课的教学目标和教学重难点,设计了以下几种教学方法: 1.情境教学法:在教学中为了提高民族学生的汉语表达能力又能直观教学,故我采用了提问导入法,问孩子们爬过山吗?爬过哪些山?请个别作答。让学生走进情境。 2.抓重点词句感悟法:《汉语课程标准》指出,汉语教师教学要以语言的工具性为主,人文性为辅来进行教学。因此,我把教学的重点放在了对字词句的理解和掌握。课文第三自然段出现“似乎”“白发苍苍”(四字词语),作为重点词语,还要求会写,因此,我用了较多的时间在该词的学习上。“顶”字比较简单易学,因为我们的学生是五年级的学生了,所以为了激发学生的学习主动性,我请了一位字写得很规范的学生上黑板范写。把学习的主动权交给了学生,让同学们根据预习来自主组词、造句,我在一边点拨、鼓励。 3.以读促悟法,通过点名读、自由读、齐读、男女生读等形式以读促悟,达到书读的目的。使学生在反复的阅读中体会初步体会天都峰的“斗”和“高”,达到熟悉课文内容的目的。

  • (新)部编人教版四年级上册《陀螺》说课稿

    2.初批交流习方法我先结合作者的第一处心情描写指导学生在画批中让语言更精炼。起初作者的心情是怎样的呢?(出示教学片段) [设计意图:在课堂教学中我敏锐捕捉到学生在交流反馈中语言啰嗦,表现为:学生批注的是句子;摘抄了文中相关内容;在批注中分析了自己思考的过程。针对这个实际学情,我在学生的初批成果上进行改批指导,像刚才视频中那样引导学生批注时应该写自己的理解而不是摘抄文中内容;根据自学提示的要求批注人物心情;批注更应精炼,留下的痕迹应是最触动读者心弦的内容,让学生清晰地看到语言由繁到简的过程。]

  • (新)部编人教版四年级上册《现代诗二首》说课稿

    (一)创设意境,引入新课。 课件展示几幅画面,引起学生思索——夕阳西下,照红了江面,晚归的鸟儿低飞在江面上。你会怎么描绘这样的画面呢? 归纳学生发言,秋天的江面上,夕阳的余晖洒满江面,归巢的鸟儿从江面飞过,岸边的芦苇在微风中轻轻摇晃,这样的图景给人一种怎样的感受?让我们一起来走进刘大白先生的小诗《秋晚的江上》。(二)初读诗歌。 1.了解作者。(课件展示)刘大白(1880——1932)浙江绍兴人,与鲁迅先生是同乡好友,现代著名诗人,文学史家。 2.读准字音。(课件展示)教师范读(注意语速、语气、语调),学生齐读,小组互读,指名读,读准字音,感受诗歌内涵。(三)赏析诗歌。 1.思考感悟:(课件展示)(1)边读边在脑中构思一幅画面,画面上会出现什么景物?(归鸟、斜阳、芦苇)这是什么季节、什么时间、什么地点,有什么景物?(秋天的晚上,在江面上,出现了归鸟、夕阳、芦苇。)

  • 中班科学:神奇的尾巴课件教案

    2.了解动物尾巴的作用。 【活动准备】  歌曲《小画家》磁带、故事《神奇的尾巴》磁带,各种动物身体和尾巴分开的图片(金鱼,松鼠,猴子,燕子,老牛,壁虎) 【活动过程】  一.今天老师给小朋友带来了一首好听的歌曲,咱们来一起听一下吧!(歌曲《小画家》)  提问:1.歌曲中的小画家是谁啊?(丁丁)2.丁丁画的什么?画的怎么样啊?(螃蟹四条腿,鸭子小尖嘴,兔子圆耳朵,大马没尾巴)3.丁丁是不是一个优秀的画家?  教师小结:丁丁做事不认真,没有认真观察,只说大话,所以没有画好,我们小朋友可不要向他学习。

  • 北师大初中数学八年级上册用二元一次方程组确定一次函数表达式1教案

    故直线l2对应的函数关系式为y=52x.故(-2,-5)可看成是二元一次方程组5x-2y=0,2x-y=1的解.(3)在平面直角坐标系内画出直线l1,l2的图象如图,可知点A(0,-1),故S△APO=12×1×2=1.方法总结:此题在待定系数法的应用上有所创新,并且把一次函数的图象和三角形面积巧妙地结合起来,既考查了基本知识,又不局限于基本知识.三、板书设计利用二元一次方程组确定一次函数表达式的一般步骤:1.用含字母的系数设出一次函数的表达式:y=kx+b(k≠0);2.将已知条件代入上述表达式中得k,b的二元一次方程组;3.解这个二元一次方程组得k,b的值,进而得到一次函数的表达式.通过教学,进一步理解方程与函数的联系,体会知识之间的普遍联系和知识之间的相互转化.通过对本节课的探究,培养学生的观察能力、识图能力以及语言表达能力.

  • 北师大初中数学九年级上册几何问题及数字问题与一元二次方程1教案

    解:设个位数字为x,则十位数字为14-x,两数字之积为x(14-x),两个数字交换位置后的新两位数为10x+(14-x).根据题意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因为个位数上的数字不可能是负数,所以x=-3应舍去.当x=8时,14-x=6.所以这个两位数是68.方法总结:(1)数字排列问题常采用间接设未知数的方法求解.(2)注意数字只有0,1,2,3,4,5,6,7,8,9这10个,且最高位上的数字不能为0,而其他如分数、负数根不符合实际意义,必须舍去.三、板书设计几何问题及数字问题几何问题面积问题动点问题数字问题经历分析具体问题中的数量关系,建立方程模型解决问题的过程,认识方程模型的重要性.通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.经历探索过程,培养合作学习的意识.体会数学与实际生活的联系,进一步感知方程的应用价值.

  • 北师大初中数学九年级上册几何问题及数字问题与一元二次方程2教案

    三、课后自测:1、如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC= 6cm,动点P、 Q分别从点A、C出发,点P以3cm/s的速度向点B移动,一直到达B为止;点Q以2cm/s的速度向点D移动。经过多长时间P、Q两点之间的距离是10cm?2、如图,在Rt △ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移 动过程中始终保持DE∥BC,DF∥AC,问点D出发几秒后四边形DFCE的面积为20cm2?3、如图所示,人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处的位置 O点的正北方向10海里外的A点有一涉嫌走私船只正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26海里/时的速度追赶。在涉嫌船只不改变航向和航速的前提下,问需要几小时才 能追上( 点B为追上时的位置)?

  • 北师大初中七年级数学上册利用移项与合并同类项解一元一次方程教案2

    练习:现在你能解答课本85页的习题3.1第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还了一条船 ,正好每条船坐9人,问这个班共多少同学?小结提问:1、今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理:① 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2)表示同一量的两个不同式子相等作业:1、 必做题:课本习题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米)

  • 北师大初中七年级数学上册应用一元一次方程——水箱变高了教案1

    解:设截取圆钢的长度为xmm.根据题意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圆钢的长度为686.44πmm.方法总结:圆钢由圆柱形变成了长方体,形状发生了变化,但是体积保持不变.“变形之前圆钢的体积=变形之后长方体的体积”就是我们所要寻找的等量关系.探究点三:面积变化问题将一个长、宽、高分别为15cm、12cm和8cm的长方体钢坯锻造成一个底面是边长为12cm的正方形的长方体钢坯.试问:是锻造前的长方体钢坯的表面积大,还是锻造后的长方体钢坯的表面积大?请你计算比较.解析:由锻造前后两长方体钢坯体积相等,可求出锻造后长方体钢坯的高.再计算锻造前后两长方体钢坯的表面积,最后比较大小即可.解析:设锻造后长方体的高为xcm,依题意,得15×12×8=12×12x.解得x=10.锻造前长方体钢坯的表面积为2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),锻造后长方体钢坯的表面积为2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).

  • 北师大初中数学八年级上册应用二元一次方程组——增收节支1教案

    因为x3表示手机部数,只能为正整数,所以这种情况不合题意,应舍去.综上所述,商场共有两种进货方案.方案1:购甲型号手机30部,乙型号手机10部;方案2:购甲型号手机20部,丙型号手机20部.(2)方案1获利:120×30+80×10=4400(元);方案2获利:120×20+120×20=4800(元).所以,第二种进货方案获利最多.方法总结:仔细读题,找出相等关系.当用含未知数的式子表示相等关系的两边时,要注意不同型号的手机数量和单价要对应.三、板书设计增收节支问题分析解决列二元一次方程,组解决实际问题)增长率问题利润问题利用图表分析等量关系方案选择通过问题的解决使学生进一步认识数学与现实世界的密切联系,乐于接触生活环境中的数学信息,愿意参与数学话题的研讨,从中懂得数学的价值,逐步形成运用数学的意识;并且通过对问题的解决,培养学生合理优化的经济意识,增强他们的节约和有效合理利用资源的意识.

  • 北师大初中数学八年级上册应用二元一次方程组——增收节支2教案

    答:书包单价92元,随身听单价360元。最优化决策:聪明的Mike想了想回答正确后便同爸爸去买礼物,恰好赶上商家促销,人民商场所有商品打八折销售,家乐福全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家购买看中的这两样物品,你能帮助他选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?提示:书包单价92元,随身听单价360元。2)在人民商场购买随声听与书包各一样需花费现金452× =361.6(元)∵ 361.6<400 ∴可以选择在人民商场购买。在家乐福可先花现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,共花现金360+2=362(元)。因为362<400,所以也可以选择在家乐福购买。因为362>361.6,所以在人民商场购买更省钱。第五环节:学习反思;(5分钟,学生思考回答,不足的地方教师补充和强调。)

  • 北师大初中数学九年级上册利用一元二次方程解决面积问题2教案

    四.知识梳理谈谈用一元二次方程解决例1实际问题的方法。五、目标检测设计1.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,则每个小长方形的面积为( ).【设计意图】发现几何图形中隐蔽的相等关系.2.镇江)学校为了美化校园环境,在一块长40米、宽20米的长方形空地上计划新建一块长9米、宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案.(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.【设计意图】考查学生的审题能力及用一元二次方程模型解决简单的图形面积问题.

  • 北师大初中数学九年级上册营销问题及平均变化率问题与一元二次方程2教案

    5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?

  • 北师大初中数学九年级上册用因式分解法求解一元二次方程1教案

    探究点二:选用适当的方法解一元二次方程用适当的方法解方程:(1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可变形为3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)将方程化为一般形式,得3x2-4x-1=0.这里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)将方程化为一般形式,得5x2-4x+1=0.这里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程没有实数根.方法总结:解一元二次方程时,若没有具体的要求,应尽量选择最简便的方法去解,能用因式分解法或直接开平方法的选用因式分解法或直接开平方法;若不能用上述方法,可用公式法求解.在用公式法时,要先计算b2-4ac的值,若b2-4ac<0,则判断原方程没有实数根.没有特殊要求时,一般不用配方法.

  • 北师大初中数学九年级上册营销问题及平均变化率问题与一元二次方程2教案

    5.一件上衣原价每件500元,第一次降价后,销售甚慢,第二次大幅度降价的百分率是第一次的2 倍,结果以每件240元的价格迅速出售,求每次降价的百分率是多少?6.水果店花1500元进了一批水果,按50%的利润定价,无人购买.决定打折出售,但仍无人购买,结果又一次打折后才售完.经结算,这批水果共盈利500元.若两次打折相同,每次打了几折?(精确到0.1折)7.某服装厂为学校艺术团生产一批演出服,总成本3000元,售价每套30元.有24名家庭贫困学生免费供应.经核算,这24套演出服的成本正好是原定生产这批演出服的利润.这批演出服共生产了多少套?8、某商店经营T恤衫,已知成批购进时单价是2.5元。根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售200件。请你帮助分析,销售单价是多少时 ,可以获利9100元?

  • 北师大初中数学九年级上册利用两边及夹角判定三角形相似2教案

    一、教学目标1.初步掌握“两边成比例且夹角相等的两个三角形相似”的判定方法.2.经历两个三角形相似的探索过程,体验用类比、实验操作、分析归纳得出数学结论的过程;通过画图、度量等操作,培养学生获得数学猜想的经验,激发学生探索知识的兴趣,体验数学活动充满着探索性和创造性.3.能够运用三角形相似的条件解决简单的问题. 二、重点、难点1. 重点:掌握判定方法,会运用判定方法判定两个三角形相似.2. 难点:(1)三角形相似的条件归纳、证明;(2)会准确的运用两个三角形相似的条件来判定三角形是否相似.3. 难点的突破方法判定方法2一定要注意区别“夹角相等” 的条件,如果对应相等的角不是两条边的夹角,这两个三角形不一定相似,课堂练习2就是通过让学生联想、类比全等三角形中SSA条件下三角形的不确定性,来达到加深理解判定方法2的条件的目的的.

  • 北师大初中数学九年级上册用因式分解法求解一元二次方程2教案

    【学习目标】1 、学习过程与方法:因式分解法是把一个一元二次方程化为两个一元一次方程来解,体现了一种“降次”思想、“转化”思想,并了解这种转化思想在解方程中的应用。2、学习重点 :用因式分解法解某些方程。 【温故】1、(1)将一个多项式(特别是二次三项式)因式分解,有哪几种分解方法?(2)将下列多项式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自学课本 P46----P48[讨论]以上解方程的方法是如何使二次方程降为一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

上一页123...282930313233343536373839下一页
提供各类高质量Word文档下载,PPT模板下载,PPT背景图片下载,免费ppt模板下载,ppt特效动画,PPT模板免费下载,专注素材下载!