四、教学过程(一)导入新课1.播放2008年北京奥运会开幕式视频,并让学生说说感受。师:同学们,这就是集体的力量,这是一个由2008个人表演的壮观节目。其实啊,我们的班级也是一个集体,我们每一个人都是这个班集体中的一份子,但是要想做到整齐划一,离不开我们班级的每一个人的努力,这就需要我们服从指挥,听从号令。其实啊,在我们的校园里,也有一个神秘的“指挥家”,这个“指挥家”特别有威力,连老师都要听它的指挥。这么神奇的指挥家,大家猜猜是谁呢?(生预设:喇叭)(二)新授1.师:在我们的校园里有一些专属于我们特有的声音,今天我们这节课就来认识一下《校园里的号令》(板书课题:校园里的号令)2.师:我这里有一段视频,视频里的同学是怎么做的呢?(生预设:我看到大家做得都很好,我们要热爱祖国,尊敬国旗国歌,大家听到国歌都立刻站好,看向国旗。)
预设3:做完作业没检查。师:你做什么作业没检查结果怎么了师:原来做完事情不检查会让我们马虎预设4:做事太粗心大意了。师:你做哪件事粗心大意了结果怎么样师:原来做事粗心大意也会让我们马虎预设5:做事不认真。师:你做了件什么事不认真结果怎么样师:原来做事不认真会让我们马虎。2.“智慧仙子”有秘方师:本侦探可不是小马虎,所谓为了搞清楚马虎的原因,特意去请教了智慧仙子。看看她认为马虎的原因有哪些。(图片出示智慧仙子,并点击马虎的原因)师:小朋友们,我们知道的马虎给我们带来那么多的麻烦,也了解了马虎的原因,我们要不要做小马虎啊生:不要做师:对啦,我们不做小马虎,并板贴“不做”。小朋友们,这纸上有很多你做过的马虎事,让我们用力把他揉成一团,把小马虎扔进垃圾箱,从此告别这些马虎事,好不好
6.小结:在我们身边,到处都充满了空气,刚才同学们用嘴吹, 用书本扇,用力跑,老师用手挤塑料袋里的空气,空气也跟着我 们做起了运动,这样就形成了风,风形成于空气的流动。【设计意图:进一步体会空气的流动会产生风,培养学生的动脑 和动手能力。】活动三 和风一起玩 师:风吹走了严寒,吹来了春天。我们可以和风一起玩了,想和 风一起玩什么呢?指名回答。(课件出示 ) 师:有那么多好玩的游戏, 可以和风一起玩。 想不想现在就去呢? 师生一起到操场尽情地玩风车、纸飞机、吹泡泡 师:同学们,刚才在外面和风一起玩,有什么感受?指名回答。老师和你们一样,和风一起玩的时候,感觉特别高兴,特别快乐,特别有趣。(板书:玩——真有趣) 师小结:同学们这就是我们今天这节课所了解到,感受到的,找风到处有,和风玩真有趣。还想对风有新的认识吗?下节课我们继续学习。【设计意图:感受和风一起游戏的快乐。】
课件出示教材第46 页的苹果树,学生说一说树上的小朋友在做什么家务,接着,在小组内交流自己做过什么家务活,是怎么做的,然后,全班分享做家务的感受,教师相机引导。(板书:快乐成长)设计意图:感受做家务过程中的快乐与成长。活动二:做点家务意义大学生阅读教材第47 页的三幅图画,结合自己的生活经历,小组内讨论做家务对自己和家人有什么意义?全班汇报交流,教师相机引 导。(板书:爱家人)设计意图:懂得做家务不但能帮助自己成长,同时也是爱家人的表现活动三:快乐做家务 课件出示儿歌《家务活》。 学生先自己读一读,再全班齐读。 设计意图:学生再次感受做家务的意义。 环节三:课堂小结,内化提升学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的 认识与情感。
活动二:花草面前要小心 学生谈一谈自己曾经遇到过的或听说过的因与植物接触而受伤的事情,教师引导学生学会与植物共处时自我保护的方法。(板书: 保护自我)设计意图: 掌握与植物共处时自我保护的方法,学会与自然中的 美好生命共同生长。活动三:与花儿草儿共在课件出示儿歌《玫瑰花》。学生先自己读一读,再全班一起读。设计意图:再次感受美丽而神秘的植物世界。 环节三:课堂小结,内化提升 学生谈一谈学习本节课的收获,教师相机引导。设计意图:梳理总结,体验收获与成功的喜悦,内化提升学生的 认识与情感。环节四:回归生活,拓展延伸 回家后,学着种些花和草。设计意图: 将课堂所学延伸到学生的日常生活中,有利于落实行 为实践。六、板书设计为了突出重点, 让学生整体上感知本节课的主要内容, 我将以思 维导图的形式设计板书:
思考:你有什么好办法避免这些麻烦呢? 设计意图:本环节利用微视频,让学生分析身边小伙伴的烦恼,让学生产生情感代入,从而产生不能乱丢物品的情感。(三)、说一说,金点子大比拼。同学们,我们身边的小马虎可真不 少,你有什么好的意见或建议想对她们说一说吗?(四)、写一写,贴一贴。请在智慧果上写好你的建议,并把它贴在 智慧树上,告诉身边的小马虎们吧。设计意图:写一写,是学生主动参与生活、创造生活的过程,架起了 课堂通向生活的桥梁,引起情感的共鸣。(五)、演一演。同学们给智慧树上挂满了智慧果,一个个智慧小锦囊提醒着我们如何爱惜自己的小伙伴,老师非常开心,想和大家一起分享一首儿歌,《我们的小伙伴》设计意图:利用学生喜爱的chant形式,说唱结合,趣味性浓,针对 性强,学生入脑入心,留下深刻的印象,有效的引导学生在生活中爱护物 品、学会整理。
为让学生深刻认识到做事拖拉的后果严重,在本活动环节中,我借用了小学语文课本中的《一分钟》故事,同时让孩子们对故事中主人公“元元”的未来生活进行设想。孩子们在故事倾听和畅想中,深深感受到做事拖拉,后果严重。同时,两个“一分钟游戏”让孩子们体会到时间宝贵,不能随便浪费,从而树立做事不拖拉的意识。活动四:续故事,告别“拖拉”此活动是对“第一板块的活动”的呼应,再次呈现“拖拉鸟”,请学生说说现在有什么话想对它说。接着,是“拖拉鸟”的自我反省:“小朋友们,听了大家的话,我觉得拖拖拉拉真是个不好的习惯,我要马上改掉这个坏习惯。再见啦!趁着天气好,我要赶紧搭窝去!再见!”最后,让学生展开想象,给改掉坏习惯后的“拖拉鸟”,重新取个名字。该环节的设计非常富有童趣。孩子都向往美好的事物,所以本环节的续编故事用意就在于让孩子懂得知错就改,为时不晚。引导他们愿意努力改掉之前的拖拉习惯,树立做事不拖拉的意识。这也是为第二课时的学习做了铺垫。
一、说教材《我们有精神》一课,旨在帮助学生“养成良好的生活习惯,有良好 的精神面貌”。本课三个主题紧密结合 “我们有精神” 这一话题展开, 同时又分别侧重不同的要点。教科书以“这样真精神”为切入点,引 导学生理解“有精神”的状态,通过升旗仪式引导学生领会在正式、 庄严的场合里“有精神”的样子。在此基础上,引导学生关注日常生 活中的“有精神”。无论是坐姿端正、认真读书的样子,还是站得挺 拔、高唱爱国歌曲的样子, 或是在课堂上响亮回答问题的样子,都是 “有精神”的具体表现。接下来,教材通过对学生坐姿的对比图,帮 助学生了解“有精神”的价值,以此说明“有精神”对身体健康的重 要意义。而在第三个小主题“我们天天有精神”中,教材旨在帮助学 生找到自己在不同状态中“有精神”的感受。教师要引导学生回到生 活中,思考怎样才能每天都有精神,从而进一步讨论保持天天有精神 的策略和办法,让有精神成为一种生活常态。
(三)、小小心愿树1.师:看到同学们取得了这么多的成长和进步,冉老师也想给自己发个奖。以前,老师的字写得不够漂亮,为了鼓励自己,老师给自己发了一个“未来书法家”的奖状。(出示PPT)可是如果要成为书法家,老师还得继续努力,多多练习,才能实现自己的愿望。2.师:像老师一样,即将升入三年级的小熊猫也给自己提出了新的目标。(播放PPT)3.同学们,现在让我们像小熊一样,把自己的心愿和目标写下来,贴到黑板上的心愿树上来时刻鼓励自己。现在请同学们把老师给你们准备的便利贴拿出来,首先写上姓名,然后再把自己在三年级想要达成的心愿写下来,可以是生活上中的、学习上的、也可以是兴趣爱好上的。现在开始动笔写吧!(播放音乐)生:(将愿望贴到心愿树上)[设计意图:通过“小小心愿树”的活动,让学生为自己提出新目标,并引导学生知道要实现新目标,必须得坚持不懈的努力才行。]
【设计意图:引导学生写种植计划,锻炼动脑动手能力。】(4)、我们的收获1.师:一周过去了,你们种的种子怎么样了?一定有很多体会吧?下面让我们一起来分享一下自己的种植故事。2.生l:这是我种的土豆的照片。瞧,土豆苗多可爱啊!生2:爷爷说不能天天浇水,也不能心急。生3:花生苗的力量真大呀,能把好大的土疙瘩顶起来!生4:我自己种的蒜苗都舍不得吃。3.(课件出示教材第l7页“我的种植日记”)师:你们从中发现了什么问题?4.生:日记中的主人翁因看到种了3天的葵花子还没发芽而心急。5.(课件出示教材第17页《植物成长记录图》)师:你们从中发现了什么?6.学生讨论交流。7.师:的确,我们在观察植物生长的过程中不能心急,要认识到一粒种子的生长过程和我们的生长过程一样,需要经过耐心地等待,才会发芽、成长。【设计意图:让学生体会到种子发芽的过程是一个耐心等待的过程,从而明白要细心地呵护每一个小生命。】
一、依标扣本,说教材本课是统编版二年级下册《道德与法治》第三单元“环保小卫士”中的第三课。本课通过“我是一张纸”树立节约用纸,保护环境的意识。它包括“你找到我了吗”、“我从哪里来”、“我的苦与乐”三个板块。本节课主要围绕着前两个板块进行,旨在引导学生从自己身边触手可感的资源出发,了解纸张的来源及纸张在生活中的重要作用,明确纸张来之不易,而且与我们的生活息息相关。二、以人为本,说学情二年级的孩子由于年龄较小,生活经验也较少。他们对于纸的认识比较模糊,不明白纸张的来之不易以及浪费纸产生的环保问题。在本节课的教学中,我根据学生的心理和认知特点,在生活的场景中,认识纸、了解纸的制作过程,养成节约用纸、保护环境的习惯。教学目标:1.知道纸在生活中无处不在,感受纸与生活息息相关。2.认识到节约资源、保护环境、人人有责。3.能从节约用纸做起,节约资源,保护环境。4.能尝试创新,过有创意的生活。
学生画完后,将自己的作品贴在黑板上,并向大家讲述自己的想法。然后引导学生思考并讨论:大家同时在圆上作画,为什么画的不一样?(先由学生小组 讨论,然后学生派代表回答,最后老师引导学生归纳小结)通过大家在圆上作画,让学生知道,不同的人对同一件事情会有不同的想象。从而让学生得出结论:同学们的想法不一样。通过这个环节,激发学生想象,让学生自信并成功自己,欣赏、善待他人。活动三:“我们共同描绘五彩的花束” 我们的班级真是丰富多彩的班级,有着各具特色的你我他,老师很奇怪,如果让大家不同的想法集合在一起会怎么样呢?我们一起来试试吧!小组合作 在同一张纸上给花束上色并给它起一个具有你们小组特色的名字,画完欣赏完 的小组快速把图贴在黑板上。以上三个活动 围绕教学目标展开,每个活动都有目的,三个活动贯穿着逻 辑性,逐步提升。最后我说一说课后延伸环节。
一、依标扣本,说教材《万里一线牵》是部编版《道德与法治》三年级下册第四单元《多样的交通和通信》的第三个主题中的内容。这个主题主要是了解多样便捷的现代通信方式;通过古今通信方式的对比,感受通信发展给人们带来的便利。本课教学通过帮助学生运用已有的生活经验和调查资料相对比,通过对知识的探究发现问题,从而使学生对现代通信方式的发展有初步了解,知道多种多样的现代通信方式,以及通信方式的发展给人们生活带来的便利。二、以人为本,说学情对于现代通信方式,小学生使用的已经很广泛了,但是小学生真正运用现代通信方式解决生活问题的经验不足、缺乏体验,对本知识点的了解很少。因此,依据学生的生活实际和本课的教学目标,我以学生的生活实际为起点,利用课程资源,使教学与学生生活贴得更近,让学生更好的感受现代通信的迅猛发展,以及给生活带来的无限便捷,体验通信愉悦,并在以后的生活中学会合理运用通信方式解决实际问题,更好地服务于当下和未来的生活。
①看,好几张都是关于汽车尾气的图片。那一辆普通轿车会排放多少温室气体呢?②小结:同学们,现代化的交通工具给我们带来便利的同时,也在大量制造二氧化碳,带来全球变暖,最终给我们人类带来伤害。预设(2):工厂废气小结:工厂生产我们所需物品的同时,也在制造温室气体,使得全球变暖。预设(3):燃烧垃圾、燃烧秸秆预设(4):空调外机等电器①学生介绍②你们想过吗?空调这些家电在投入使用的时候就会间接产生温室气体。③小结:人类的很多活动都在大量排放温室气体,导致全球气候变暖。预设(5):过度砍伐①这张特殊的图片,是谁收集的?你是怎么想的?②小结:大量砍伐森林减少了对温室气体的吸收。我们来看看全球森林面积的现状。③同学们,看了介绍,你最大的感触是什么?3. 小结:“温室气体”排放以及其他人为因素已成为自20 世纪中期以来气候变暖的主要原因。
中国有句古话叫习惯成自然。好的习惯,会让我们工作起来有条理,也会让人觉得你这个很靠谱。一是养成汇报的习惯。只要是领导交待给的事情,无论事情大小,这都是公家的事情,就需要多请示、多汇报、多见面。一来可以听听领导的想法,给我们把把脉,确保方向不出现偏差,二来可以让领导了解我们青年干部的想法,减少代沟,增加共识。二是养成做计划的习惯。每天给自己制定一个小的目标,计划好今天要完成的事情,这样不仅可以知道每天要做些什么、做了些什么,还可以对工作进行有效控制。这样坚持一段时间,就会发现,拖延症能够有效缓解,计划的工作基本能如期完成,工作效果也会非常明显,工作给我们带来的成就感也容易获得。三是养成注重细节的习惯。比如收到的工作信息第一时间回复;外出培训制定交接清单、给对口市局的人员请假;打电话等对方挂了之后自己再挂等等。这些都是细节方面的问题,但往往细节决定成败,需要我们在工作中多加留心、多加注意。
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④