教学目标:用热情的情绪演唱歌曲《在那遥远的地方》,感受青海民歌的风格。教学准备:歌曲谱例、电子琴等。教学方法:听唱法、听赏法等。教学过程:一、激趣导入介绍青海,了解青海民俗。二、教学新课1、简介青海的别样风情。2、学唱《在那遥远的地方》。 1)听歌曲范唱,初步感受歌曲情绪。2)熟悉歌曲旋律。3)分段学唱歌词。①集体朗读歌词。②听琴分段学唱歌词。4)完整演唱歌曲。教学后记:结合民族音乐文化,让学生走进青海的神奇土地,使学生在了解歌曲的同时培养了审美情趣,激发了学生学习兴趣。
教学过程:一、师生间相互问好师:同学们下午好!生:老师好!二、进行新课 1、播放歌曲《在那遥远的地方》。2、放映幻灯片,欣赏有关于青海的图片。3、出示歌谱,演唱歌曲《在那遥远的地方》。 师:接下来,同学们听老师演唱这首歌一遍,然后我们大家一起把这首歌的歌谱唱一遍,再把歌词填进去来唱一遍。在演唱歌曲的时候,同学们要用抒情、欢快的声音,准确的音高、节奏,自信地演唱歌(演唱歌曲) 师:同学们唱的很不错,接下来老师要请2个女同学来分别演唱这首歌曲的一、二段,在第三、四段的时候,两个人再合起来唱,有没有同学主动起来唱啊?(学生回答) 师:XX同学,XX同学,请认真听着老师的伴奏,把握住歌曲的节奏和速度,注意3/4拍的强弱规律。(学生表演。)三、欣赏流行音乐《在那遥远的地方》。
(一)活动目标: 1、初步了解蚕一生的主要成长阶段(卵、幼虫、蛹、成虫)及其外形特征,体验生命的多样性。 2、喜欢蚕,乐意用多种方式表现蚕的生活习性。(二)材料提供:1、多媒体制作《有趣的蚕》、范例作品 2、准备能表现蚕宝宝的各种物品如:绘画工具、彩泥、餐巾纸等(三)指导过程:
活动活动前我做了充分的准备:拳击手套人手一套,沙袋,录音机,磁带,奖章,怪兽服装。 俗话说:“兴趣是最好的老师。”幼儿有了兴趣就能主动积极的去学习,高高兴兴的去玩,但不意味着幼儿都要像拳击手那样地动作规范,只是通过活动让幼儿学习一种健身和发泄的方法,减少攻击性行为。游戏开始我请幼儿扮演奥特蔓战士,苦练拳击本领。再加上一些音乐,把幼儿的生理、心里情绪都调动起来了,有跃跃欲试,一显身手的冲动。林林说:“我要用钩拳打怪兽。”铭铭说:“我会用直拳。”说完他们就到沙袋上打了起来。其他小朋友看到他们像拳击手一样练得好时,也以他们为榜样,练的更带劲。活动中我注重幼儿的个体差异,对能力强、动作好的幼儿不仅要求上肢动作到位,进一步要求脚下灵活,移动迅速,对能力差的幼儿,引导他们掌握出拳动作即可。本领练好了,奥特蔓战士要去执行任务了,开车出发。这时由男老师扮演的怪兽出现了,奥特曼战士要用拳击的本领战胜他,打中要害怪兽就发出叫声,规则是:1、怪兽退回老穴,战士必须回来补充能量。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
方程有两个不相等的实数根.综上所述,m=3.易错提醒:本题由根与系数的关系求出字母m的值,但一定要代入判别式验算,字母m的取值必须使判别式大于0,这一点很容易被忽略.三、板书设计一元二次方程的根与系数的关系关系:如果方程ax2+bx+c=0(a≠0) 有两个实数根x1,x2,那么x1+x2 =-ba,x1x2=ca应用利用根与系数的关系求代数式的值已知方程一根,利用根与系数的关系求方程的另一根判别式及根与系数的关系的综合应用让学生经历探索,尝试发现韦达定理,感受不完全的归纳验证以及演绎证明.通过观察、实践、讨论等活动,经历发现问题、发现关系的过程,养成独立思考的习惯,培养学生观察、分析和综合判断的能力,激发学生发现规律的积极性,激励学生勇于探索的精神.通过交流互动,逐步养成合作的意识及严谨的治学精神.
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
2、猜想 一元二次方程的两个根 的和与积和原来的方程有什么联系?小组交流。3、一般地,对于关于 方程 为已知常数, ,试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1?x2的值,你能得出什么结果?与上面发现的现象是否一致。【知识应用】 1、(1)不解方程,求方程两根的和两根的积:① ② (2)已知方程 的一个根是2,求它的另一个根及 的值。(3)不解方程,求一 元二次方程 两个根的①平方和;②倒数和。(4)求一元二次方程,使它的两个根是 。【归纳小结】【作业】1、已知方程 的一个根是1,求它的另一个根及 的值。2、设 是方程 的两个根,不解方程,求下列各式的值。① ;② 3、求一个一元次方程,使它的两 个根分别为:① ;② 4、下列方程两根的和与两根的积各是多少 ?① ; ② ; ③ ; ④ ;
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
活动准备:1、活动前请家长帮助幼儿了解有关冷饮的一些小常识。如:冷饮中的多种成分,对身体有利的和无利的甚至是有害的成分┉2、自制冷饮的饮料:奶粉、不同口味的果珍、苹果汁、蜂蜜、糖、筷子┉3、教师收集一些冷饮的外包装。 活动过程: 1、组织幼儿进行谈话活动。建议提下列问题: ▲我知道小朋友都喜欢吃冷饮,你们都吃过哪些冷饮? ▲你最喜欢吃哪些冷饮,它是什么味道的? ▲你为什么喜欢吃冷饮?吃冷饮有哪些用处? ▲吃冷饮又有哪些不好的地方?(幼儿自由讨论)
让孩子自然而然接受刷牙大部分的小孩刚开始都会排斥把牙刷放入口内(尤其是不满一岁的小婴儿),较敏感的孩子还可能有呕吐感。父母开始教导孩子刷牙时,可以先选一支大小适中、软毛的儿童牙刷,市面上的牙刷颜色非常鲜艳,有些还有卡通图案,可以吸引孩子的注意力,也有分龄(0~2岁,3~5岁,6~9岁),因为刚长出乳牙的小婴儿正处于口腔期,先让小孩当作玩具放入口内,让孩子不会排斥牙刷在口腔中感觉,也不必太严肃要宝宝马上学会自己刷牙。
活动准备: 1、教学挂图:小朋友运动----不想吃饭。小朋友吃饭----小朋友追逐跑----手捂着肚子。 2、纸和笔。 活动过程: 一、出示图片,引导幼儿观察画面,了解吃饭前后剧烈运动带来的危害。 1、教师:图上有谁?小朋友在干什么?为什么他们不想吃饭? 2、教师:图上的小朋友吃饭后,在场地上干什么?为什么他捂着肚子? 二、教师进行简单小结。 1、剧烈运动需要大量的体力,在吃饭前后进行剧烈运动,人会出很多的汗,容易使人疲劳,感觉不舒服,所以人就不想吃饭。 2、在吃饭后剧烈运动,容易使肠胃中的饭粒掉到阑尾中,出现肚子疼、阑尾炎等症状。
【活动目标】1、发展幼儿的观察、记录能力,体验探索的乐趣。2、引导幼儿在好奇心和求知欲的驱动下探索操作、初步理解物体的溶化速度与物体的形状、大小以及水的温度、是否搅拌有关系,并能用自己的语言进行表达。【活动准备】 杯子、面糖、砂糖、冰糖、小块糖、果珍、一次性纸杯、碟子、热水、凉水、记录表、笔若干。【活动重难点】 在实验中探索、理解物体的溶化速度与物体的形状、大小以及水的温度、是否搅拌等因素有关系。【活动流程】 (一)猜测和假设: 教师出示各种不同的物品(石子、棉花、各种糖、植物种子等等)。幼儿猜测:哪些物品放进水里能化,哪些物品放进水里不化? 幼儿自由交流讨论后进行分类:能溶化的一组,不能溶化的一组。 提出问题:如果把这些能溶化的物品放到水里,哪些化得快、哪些化得慢?怎样做能让它化得快一些呢?导入课题。
A.20x-55≥350 B.20x+55≥350C.20x-55≤350 D.20x+55≤350解析:此题中的不等关系:现在已存有55元,计划从现在起以后每个月节省20元.若此学生平板电脑至少需要350元.列出不等式20x+55≥350.故选B.方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.三、板书设计1.不等式的概念2.列不等式(1)找准题目中不等关系的两个量,并且用代数式表示;(2)正确理解题目中的关键词语的确切含义;(3)用与题意符合的不等号将表示不等关系的两个量的代数式连接起来;(4)要正确理解常见不等式基本语言的含义.本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.
[活动目标]1、让幼儿认识水的有关性质及水的用途。2、萌发幼儿节约用水、保护水资源的意识。3、发展幼儿的观察和语言表达能力,为汶河位于家乡而自豪。 [活动准备]1、请家长配合生活中注意节约用水并有意识引导幼儿节约用水。2、实验用的小瓶、杯子、颜料、可乐、醋、透明的塑料细软管。3、(1)被污染水的挂图。 (2)正在滴水的自来水管。 (3)河里的鱼、虾、面临死亡的挂图。 (4)课前家长同幼儿参观汶河。
2、愿意通过自己的努力,想办法获取知识。3、喜欢与同伴合作,共同探究,共同分享。资源准备:1、背景知识:了解有关残留农药的危害,并掌握几种祛除方法。2、物质材料:各种水果蔬菜、两块展板、幼儿手头资料。3、活动铺垫:本活动重点让幼儿知道几种祛除农药的方法,所以把了解农药危害放在活动前的 铺垫部分,请幼儿收集了农药危害的资料,大家一起展示交流,知道残留农药会使人腹痛、 腹泻、消化不良,引发心脑血管疾病,甚至危急生命等然后请幼儿回去后继续收集祛除农药 的方法的资料。活动与指导:1、巩固已有知识:请小朋友观看上一次活动布置的展板,巩固关于残留农药危害的知识,请两个代表解说一下小朋友的资料。2、了解几种祛除农药的方法:(1)、请小朋友小组交流收集到的资料,说一说自己了解到的方法。(2)、幼儿自由展示资料,相同方法的资料同时粘贴到展板上。总结出四种方法:浸泡、去皮、刷洗、加热。(3)组讨论:认为哪种方法最好。(4)组派一名代表说出自己组的想法,其他组进行评价。(例如:第一组认为去皮办法好,农药祛除彻底,其他组有的幼儿持反对意见,认为用刀去皮,容易割到手;而有的幼儿持支持意见,认为桃、芒果可以直接剥皮,不存在危险等等。[关注点]A、关注幼儿能否积极参与讨论 B、关注幼儿评价时是否敢于表达自己的想法
活动准备: 剪刀、红蓝墨水、杯子、橡皮筋、水。 芹菜、白色花朵(玫瑰或康乃馨。) 活动过程: 做小实验,请幼儿仔细观察植物是怎么喝水的。1、芹菜实验: 将芹菜的茎剪短一些,叶子摘掉一些。 把橡皮筋套在杯子上,再装进一些水,并滴进一些红墨水。 将芹菜插进杯子里,并调整橡皮筋到水面位置做记号。 过一段时间,让幼儿看看水面和橡皮筋的位置是否一样(水面低于橡皮筋),芹菜的茎有什么变化(变红)。