二、活动准备: 1、长条卡纸、图形彩纸、浆糊、抹布。 2、铃儿响叮当的音乐,订书机,皮筋。 三、活动过程: 1、音乐游戏,找朋友。 老师:我们都有好朋友,老师请宝宝们去找找你的好朋友和他抱抱,好吗? 2、学习粘贴图形。 *认识纸张和图形。 老师:瞧,这里也有两个好朋友,他们也想抱在一起,是谁?(出示卡纸)认识大大的卡纸。 (出示彩纸)这是什么纸?认识彩纸。它是什么形状的? 这里还有一些图形,它们是什么形状的呢?(出示方形、三角形、心形)认识这几种图形和颜色。这些图形想和卡纸做朋友,它们怎样才能贴在一起呢?什么能帮助它们?(浆糊)
2.学习形容词:一片片,纷纷扬扬。3.萌发幼儿乐于探索,喜欢大自然的情感。准备:光盘《秋天多么美》,采集树叶,胶棒塑封机。过程:一开始部分: 带领幼儿户外散步,引导幼儿发现秋天大自然的变化。(天凉了,树叶落了)二基本部分:1. 谈话,引出主题。2. 播放光盘,激发幼儿热爱大自然的情感。3. 请幼儿简单描述所采集的树叶。
甲方:_xx文化传播(上海)有限公司________乙方:_________甲乙双方根据《中华人民共和国反不正当竞争法》和国家、地方有关规定,就企业技术和产品秘密,包括(戏剧影视美术设计图纸,人物造型设计图纸,电视台及戏剧影视剧作品剧照,工作照等)公司及客户财产保护达成如下协议:1.保密范围甲方一切相关的设计图纸和原创动画或视频等,电视台及戏剧影视剧作品剧照,工作照等甲方尚未公开的发展规划、方针政策、经营决策的信息、计划、方案、指令及商业秘密;甲方财政预算、决策报告、财务报表、统计资料、财务分析报告、审计资料、银行账号;甲方的经营方法、状况和经营实力;甲方未公布的人事调动、人事任免;甲方机构的设置、编制、人员名册和统计表、奖惩材料、考核材料;甲方各级员工的个人薪金收入情况;甲方具有保密级别的文件、资料、产品、影视剧照、工作照、会议记录、信件、方案、投标书、图片、电脑软件;
甲 方: 地 址: 电话: 法定代表人:________________ 职务:____________ 国籍:____________乙 方: 地 址: 电话: 法定代表人:________________ 职务:____________ 国籍:____________兹经双方同意,甲方委托乙方在________________加工________________________________ ,其条款如下:1.来料加工和来件装配的商品和数量:(1)商品名称;(2)数量………共计 台。2.一切所需用的零件和原料由甲方提供,或由乙方在 或 购买,清单附于本合同内。3.每种型号的加工费如下(1) (大写: 美元);(2) (大写: 美元);(3) (大写: 美元)。4.加工所需的主要零件、消耗品及原料由甲方运至____________,若有(某地)
1.来料加工和来件装配的商品和数量:(1)商品名称;(2)数量………共计 台。2.一切所需用的零件和原料由甲方提供,或由乙方在 或 购买,清单附于本合同内。3.每种型号的加工费如下(1) (大写: 美元);(2) (大写: 美元);(3) (大写: 美元)。4.加工所需的主要零件、消耗品及原料由甲方运至____________,若有(某地)短少或破损,甲方应负责补充供应。5.甲方应于成品交运前1个月,开立信用证(或电汇全部加工费)用于由乙方在____________或____________购买零配件、消耗品及原料费用。6.乙方应在双方同意的时间内完成____________型标准____________的加工和交运,不得延迟,凡发生无法控制的和不可预见的情况例外。7.零件及原料的损耗率:加工时零件及原料损耗率为______%,其损耗部分由甲方免费供应,如损耗率超过_____%,应由乙方补充加工所需之零件和原料。8.若甲方误运原料及零件,或错将原料及零件超运,乙方应将超运部份退回,其费用由甲方承担,若遇有短缺,应由甲方补充。
老师们,同学们,今天——XX年3月22日是第十八届“世界水日”,3月22-28日是第二十三届“中国水周”。联合国确定的XX年“世界水日”主题是“关注水质、抓住机遇、应对挑战”,我国纪念XX年“世界水日”和开展“中国水周”活动的宣传主题为“严格水资源管理,保障可持续发展”。关注新闻的老师和同学都知道,我国的云南省正在遭受60年不遇的大旱,几个月没下雨。河塘干涸,水井干枯,600余万人饮水困难,3000万亩农田受灾。更可怕的是,据气象专家预测,云南的旱情有可能持续到5月份雨季到来之前。我们的家乡天津也是一个缺水的城市。天津自身没有水源,降水量也小,缺乏贮存水的条件,目前,天津的城市用水主要依赖滦河水。1983年竣工的引滦入津工程全长234千米,是当时中国最长的引水工程,平均每年向天津市输送 亿立方米的淡水。但是,引滦工程并没有彻底解决天津的水危机。尤其是最近几年,我国北方地区连年干旱,水质污染,水资源的可利用量日趋紧张,而用水浪费则进一步加剧了水资源的短缺。
第十八届“世界水日”国旗下的讲话:珍爱每一滴水老师们,同学们,今天——XX年3月22日是第十八届“世界水日”,3月22-28日是第二十三届“中国水周”。联合国确定的XX年“世界水日”主题是“关注水质、抓住机遇、应对挑战”,我国纪念XX年“世界水日”和开展“中国水周”活动的宣传主题为“严格水资源管理,保障可持续发展”。关注新闻的老师和同学都知道,我国的云南省正在遭受60年不遇的大旱,几个月没下雨。河塘干涸,水井干枯,600余万人饮水困难,3000万亩农田受灾。更可怕的是,据气象专家预测,云南的旱情有可能持续到5月份雨季到来之前。我们的家乡天津也是一个缺水的城市。天津自身没有水源,降水量也小,缺乏贮存水的条件,目前,天津的城市用水主要依赖滦河水。1983年竣工的引滦入津工程全长234千米,是当时中国最长的引水工程,平均每年向天津市输送亿立方米的淡水。但是,引滦工程并没有彻底解决天津的水危机。尤其是最近几年,我国北方地区连年干旱,水质污染,水资源的可利用量日趋紧张,而用水浪费则进一步加剧了水资源的短缺。
敬爱的老师,亲爱的同学们:大家上午好!我是来自初一四班的彭雅新。今天我国旗下讲话的题目是“增强安全意识,做一个让父母省心的好孩子”。安全,对于每一个人都很重要,尤其是对于我们这些尚未成人的学生来说。在我们身边,总有一些同学不注意安全,不珍惜生命,把老师的教导和家长的叮咛当作耳旁风,结果不仅受到了伤害,有的甚至造成了残疾危及到生命。比如有的同学不遵守交通规则,横穿马路闯红灯;有的同学喜欢在楼梯旁追逐打闹,上下楼梯故意拥挤;有的同学喜欢玩锐利的剪刀、小刀;还有的同学放学不及时回家,喜欢在公共场所逗留,……以上都是一些不安全的行为,结果给我们造成了不同程度的伤害。我们经常也会听到这样一些事情。有的同学玩鞭炮时炸伤了眼睛;还有的同学不小心摔伤了腿脚。去年江苏省双庄的三位同学由于购买了不法小贩的食品,误食了老鼠药,三人同时中毒,要不是发现早抢救及时,差点儿丢了性命。前几年临近“五一”假的时候,一位即将初中毕业的小姑娘,在课外活动时,不幸从两米多高的看台上摔了下来,摔坏了脑袋,她昏迷不醒,几乎没有了心跳和呼吸,虽然经过医护人员的全力抢救,至今也没有脱离危险。
老师、同学们:早上好!今天是第21个全国中小学生安全教育日,今年中小学学生安全教育日主题是“强化安全意识,提升安全素养”,我们学校把这一周定为安全教育周,主题是生命教育。学校根据这一主题将开展一系列的活动,各个班级要开好一个生命教育的主题班会,出好一期黑板报,同学们要阅读一本或一篇有关生命教育的书籍或资料;进一步认识生命,树立正确的生命观,欣赏生命、尊重生命、敬畏生命,直至热爱生命,以达到激发生命的潜能,提升生命的品质,捍卫生命的尊严;感受生命的美好,唤起生命的热情,体认生命的意义,实现生命的价值;学会对他人生命的尊重、关怀和欣赏,树立积极的人生观。同学们,生命最大的特征是“生生不息”,我们的生命源于父母,对父母要有感恩之情、思念之情、亲爱之情。“仁者爱人”,要从与自己最亲近的人爱起,扩展到爱他人,爱社会,爱万物。要明白生命之成长必扎根于社会文明、文化与传统的土壤中,与他人、与过去现在未来之一切人的生命相依相系。
老师们、同学们,大家上午好!今天我国旗下讲话的主题是让志愿服务成为一种精神。有一种精神叫奉献,有一种责任叫志愿!志愿服务是每个人自愿贡献个人的时间及精力,在没有任何物质报酬的情况下,为改善社会民生、促进社会和谐而提供的服务。志愿服务是广大青年弘扬社会新风、参与社会管理、彰显社会责任的生动实践。大力弘扬“团结、奉献、友爱、进步”的志愿精神,积极投身志愿服务行动,从我做起,从身边小事做起,与责任相伴,与文明同行,让志愿精神永远传承下去。今年12月5日是第31个国际志愿者日,为此,我们向所有老师和学生发出倡议:让我们行动起来,倡导文明,奉献社会,积极做志愿服务的实践者和传播者,用我们的行动争做文明有礼的田中人,用我们的爱心共同构建文明和谐的校园!
材料说明了什么?探究二:材料分析:2005年12月13日至18日,WTO第六次部长级会议在香港召开。会议经过谈判通过了《部长宣言》,规定发达成员和部分发展中成员2008年前向最不发达国家所有产品提供免关税、免配额的市场准入;发达成员2006年取消棉花的出口补贴, 2013年年底前取消所有形式农产品出口补贴。材料体现了世界贸易组织在国际经济贸易领域中发挥哪些作用?探究三:P97:A、这些图示,反映出我国利用外资哪些特点?。B、能为我国提高外资利用水平提出些建议吗?探究四:材料展示:我国是人口众多的发展中大国,全国居民每天消费总额达到37亿元。每天消费粮食75万吨,相当于一个县级商品粮基地的全年产量;每天消耗猪肉6万吨,食油1万吨,糖1.6万吨,鲜蛋1.8万吨。每天购买杂志600多万册,报纸5000多万份,需要400量中型载货汽车才能装载。
思考提示在阶级社会中,社会基本矛盾的解决主要是通过阶级斗争实现的,阶级斗争是推动阶级社会发展的直接动力,当旧的生产关系严重阻碍生产力发展,需要进行变革时,代表旧的生产关系的没落阶级却不会自动退出历史舞台,利用旧的上层建筑维护自己的统治,只有代表新生产力发展方向的阶级通过社会革命,推翻没落的阶级统治,才能解放生产力,推动社会向前发展。所以,阶级社会的进步往往是通过激烈的社会革命实现的。但是,社会主义社会与阶级社会不同,这是因为,社会主义社会中,生产力和生产关系、经济基础和上层建筑之间的矛盾是一种非对抗性矛盾,不需要通过一个阶级推翻另一个阶级的阶级斗争的方式来解决,只能通过改革实现社会的发展,通过对生产关系和上层建筑进行改革,实现社会主义的自我完善,从而促进社会的发展。所以,我国经济体制改革是在坚持社会主义制度的前提下,改革生产关系和上层建筑中不适应生产力发展的一系列相互联系的环节和方面。
A生产方式是人类社会存在和发展的基础人要生存必须有吃、穿、住、用等物质生活资料,只有生存问题解决了才能谈得上社会的存在和发展,才能从事其他的活动(教育、艺术、体育、政治)。而要获得物质生活资料,必须从事物质资料的生产劳动。在这一活动中,形成了现实的生产力和生产关系,即生产方式。【思想教育】落后必然挨打,我国大力发展经济,就是为了发展生产力。发展是硬道理,中国解决一切问题的关键在与自己的发展。要积极支持改革开放,积极投身于经济建设中去。现在学好知识将来教育育人,为社会培养更多的合格人才。B生产方式决定着社会的性质和面貌社会生活纷繁复杂,包括经济生活、政治生活、精神生活、婚姻家庭生活等许多方面。这些方面都受生产方式的制约,有什么样的生产方式,就有什么样的社会结构;不同的生产方式,表现为不同性质的社会形态。社会的整个面貌只能从生产方式中得到科学的说明。【举例】家庭联产承包责任制的产生与推广1958年的人民公社化运用曾使中国农民在劳动和分配上都实行绝对的平均主义,大锅饭的结果是饭越吃越少,人越过越穷。
一、知识与技能1、知道伽利略的理想实验及其主要推理过程和推论,知道理想实验是科学研究的重要方法2、理解牛顿第一定律的内容及意义;理解力和运动的关系,知道物体的运动不需要力来维持。3、理解惯性的概念,知道质量是惯性大小的量度;会用惯性解释一些现象。二、过程与方法1、观察生活中的惯性现象,了解力和运动的关系2、通过实验加深对牛顿第一定律的理解3、理解理想实验是科学研究的重要方法三、情感态度与价值观1、通过伽利略和亚里士多德对力和运动关系的不同认识,了解人类认识事物本质的曲折性2、感悟科学是人类进步的不竭动力[教学重点]1、理解力和运动的关系2、对牛顿第一定律和惯性的正确理解3、理想实验[教学难点]1、力和运动的关系2、惯性和质量的关系[课时安排]1课时[教学过程][引入]
一、知识与技能1、知道伽利略的理想实验及其主要推理过程和推论,知道理想实验是科学研究的重要方法2、理解牛顿第一定律的内容及意义;理解力和运动的关系,知道物体的运动不需要力来维持。3、理解惯性的概念,知道质量是惯性大小的量度;会用惯性解释一些现象。二、过程与方法1、观察生活中的惯性现象,了解力和运动的关系2、通过实验加深对牛顿第一定律的理解3、理解理想实验是科学研究的重要方法三、情感态度与价值观1、通过伽利略和亚里士多德对力和运动关系的不同认识,了解人类认识事物本质的曲折性2、感悟科学是人类进步的不竭动力[教学重点]1、理解力和运动的关系2、对牛顿第一定律和惯性的正确理解3、理想实验[教学难点]1、力和运动的关系2、惯性和质量的关系
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
4.已知△ABC三个顶点坐标A(-1,3),B(-3,0),C(1,2),求△ABC的面积S.【解析】由直线方程的两点式得直线BC的方程为 = ,即x-2y+3=0,由两点间距离公式得|BC|= ,点A到BC的距离为d,即为BC边上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面积为4.5.已知直线l经过点P(0,2),且A(1,1),B(-3,1)两点到直线l的距离相等,求直线l的方程.解:(方法一)∵点A(1,1)与B(-3,1)到y轴的距离不相等,∴直线l的斜率存在,设为k.又直线l在y轴上的截距为2,则直线l的方程为y=kx+2,即kx-y+2=0.由点A(1,1)与B(-3,1)到直线l的距离相等,∴直线l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)当直线l过线段AB的中点时,A,B两点到直线l的距离相等.∵AB的中点是(-1,1),又直线l过点P(0,2),∴直线l的方程是x-y+2=0.当直线l∥AB时,A,B两点到直线l的距离相等.∵直线AB的斜率为0,∴直线l的斜率为0,∴直线l的方程为y=2.综上所述,满足条件的直线l的方程是x-y+2=0或y=2.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]