有一天,人们意料之中发现,稻穗腼腆地探出头来。不久,稻穗上挂满了细密的稻花。在人们眼中,稻花是世界上最香、最美丽的花儿。人们站在田埂上,面对田野,深深地呼吸着空气中的芬芳,在心里描画着一个金色的童话世界。可是,人们怕水肥不济,怕阳光不足,怕遗受病害,怕辜负了稻花的香气,他们天天忙活个不停,像看护孩子一般,看护着稻们。
上课前,大家呼喊的口号中最后一句是“敢于胜利”,不但追求胜利,还要“敢于胜利”,这是中华民族每一份子心中,都需要腾起的一团火焰和光明。我常想,我们从哪里来?我们中华民族从哪里来?有一个最好的回答—毛泽东主席起草的,周恩来总理书写的,刻在北京天安门广场人民英雄纪念碑上的三句话:
在我国古代诗歌创作中,热爱祖国、坚持理想信念是一个永恒的主题。(1)孟子在《鱼我所欲也》中告诉我们,当面临“生”和“义”的选择时,正确的做法是“_____________”;(2)李白在《行路难》中以“长风破浪会有时,_______________”抒发了奋发进取的豪情;(3)李贺在《雁门太守行》中以“报君黄金台上意,______________”抒发了报效国家的激情;
《岳阳楼记》选段予观夫巴陵胜状,在洞庭一湖。衔远山,吞长江,浩浩汤汤,横无际涯,朝晖夕阴,气象万千,此则岳阳楼之大观也,前人之述备矣。然则北通巫峡,南极潇湘,迁客骚人,多会于此,览物之情,得无异乎?
红网时刻怀化12月4日讯(记者张金东)12月4日上午,怀化好人馆在市图书馆揭开面纱。好人馆以图片、文字等形式,集中展示了198位好人和2个集体的各级道德模范的感人事迹,生动诠释了助人为乐、见义勇为、敬业奉献、诚实守信、孝老爱亲的道德内涵。市委常委、市委宣传部部长罗国宇为好人馆揭牌。一个好人就是一枚火种,一个典型就是一面旗帜,一个模范就是一座丰碑,近年来,怀化市涌现出一大批道德模范和身边好人,宋先钦、周秀芳等人先后荣获“全国道德模范”荣誉称号或者该项荣誉提名奖,先后有34人荣登“中国好人榜”。
多条技术路线并举是我国新冠疫苗研发的布局,目前已有灭活和病毒载体两条技术路线的新冠疫苗获批上市。新冠疫苗有的打三针,有的打两针,有的打一针,这是因为不同技术路线的疫苗特性不同。但其目的只有一个:保障效果和安全性。虽然制备方法、接种程序上各不相同,但目前投入接种的在接种方式(上臂三角肌注射)、年龄范围(18周岁及以上)、安全性和最终免疫效果(均满足世卫组织和我国药品审评中心CDE的保护效力要求)方面几乎是一致的。
瘦子一听脸色发白,目瞪口呆,但很快脸色舒展开来,现出喜气洋洋的笑容来,脸上、眼睛里似乎火星四射。他整个人像是蜷缩起来,弯腰弓背,矮了大半截儿……他的手提箱、大包小包和纸板盒全都蜷缩起来,现出条条皱纹来……他妻子的尖嘴巴越发尖了。纳法奈尔挺直了身子,扣上制服上所有的扣子……
感旧陆游当年书剑①揖三公②,谈舌如云气吐虹。十丈战尘孤壮志,一簪华发醉秋风。梦回松漠榆关外,身老桑村麦野中。奇士③久埋巴硖骨,灯前慷慨与谁同?
臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。
1981年巴塞罗那俱乐部就想引进他,但被阿根廷政府阻止,直到1982年世界杯后才得以成行。不过,草根出身的马拉多纳很难适应豪门巴塞罗那。尽管如此,在效力巴塞罗那的两年里,马拉多纳仍留下了58场进38球的成绩单。
钱塘湖春行白居易孤山寺北贾亭西,水面初平云脚低。几处早莺争暖树,谁家新燕啄春泥。乱花渐欲迷人眼,浅草才能没马蹄。最爱湖东行不足,绿杨阴里白沙堤。
世有伯乐,然后有千里马。千里马常有,而伯乐不常有。故虽有名马,祗辱于奴隶人之手,骈死于槽枥之间,不以千里称也。马之千里者,一食或尽粟一石。食马者不知其能千里而食也。是马也,虽有千里之能,食不饱,力不足,才美不外见,且欲与常马等不可得,安求其能千里也?策之不以其道,食之不能尽其材,鸣之而不能通其意,执策而临之,曰:“天下无马!”呜呼!其真无马邪?其真不知马也!
人类的语言具有两大功能,可以用一个词语来概括——表情达意:“表情”就是表达情感,“达意”就是传递信息。但在语言使用的过程中,我们往往会重视信息交流,而忽略了情感沟通,这和语言中情感表达的特殊性是有很大关系的。
阅读下面的宋词,完成下面小题。菩萨蛮黄庭坚半烟半雨溪桥畔,渔翁醉着无人唤。疏懒意何长,春风花草香。江山如有待,此意陶潜解。问我去何之,君行到自知。(选自《全宋词》)
我的第一个记忆是一岁多有的。那是在青岛,门外来了个老道,对我父亲说,14号那天,往小胖子(我当时比较胖)左手腕上系一圈红线就可以消灾,我当时吓得哇哇大哭,父亲却听从了老道的安排。他说:“二看小胖子手腕的红线,我觉得比写二本伟大的作品还骄傲。”
1、为音乐配打击乐打击乐器是小学生喜欢的乐器。让学生在音乐课上演奏打击乐器,不但可以提高学生的学习兴趣,同时也能培养对音乐的感知力。让学生为乐曲加上打击乐器伴奏。在鼓、钹声中,学生的参与意识被激发。加强了学生对音乐的理解,增强了音乐的表现力。(五)拓展延伸 。 1、让音乐与生活沟通起来音乐本来就是从生活中创造出来的。我们在音乐教学过程中根据教学需要,实现教师、学生、教材、教具、教学环境与生活的多方面横向联系,及他们之间的相互作用和影响。 (六)、课堂小结。课堂小结:是在完成某项教学任务的终了阶段,教师富有艺术性的对所学知识和技能进行归纳、总结和升华的行为方式,它常用于课堂的结尾,所以形象地被称作"豹尾"。完善、精要的"小结",可以使课堂教学锦上添花,余味无穷,让学生达到前后浑然一体的美妙境界,以激发学生学习音乐课的热情,同时性情也受到熏陶。
反思感悟用基底表示空间向量的解题策略1.空间中,任一向量都可以用一个基底表示,且只要基底确定,则表示形式是唯一的.2.用基底表示空间向量时,一般要结合图形,运用向量加法、减法的平行四边形法则、三角形法则,以及数乘向量的运算法则,逐步向基向量过渡,直至全部用基向量表示.3.在空间几何体中选择基底时,通常选取公共起点最集中的向量或关系最明确的向量作为基底,例如,在正方体、长方体、平行六面体、四面体中,一般选用从同一顶点出发的三条棱所对应的向量作为基底.例2.在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别是DD1,BD的中点,点G在棱CD上,且CG=1/3 CD(1)证明:EF⊥B1C;(2)求EF与C1G所成角的余弦值.思路分析选择一个空间基底,将(EF) ?,(B_1 C) ?,(C_1 G) ?用基向量表示.(1)证明(EF) ?·(B_1 C) ?=0即可;(2)求(EF) ?与(C_1 G) ?夹角的余弦值即可.(1)证明:设(DA) ?=i,(DC) ?=j,(DD_1 ) ?=k,则{i,j,k}构成空间的一个正交基底.
一、情境导学在一条笔直的公路同侧有两个大型小区,现在计划在公路上某处建一个公交站点C,以方便居住在两个小区住户的出行.如何选址能使站点到两个小区的距离之和最小?二、探究新知问题1.在数轴上已知两点A、B,如何求A、B两点间的距离?提示:|AB|=|xA-xB|.问题2:在平面直角坐标系中能否利用数轴上两点间的距离求出任意两点间距离?探究.当x1≠x2,y1≠y2时,|P1P2|=?请简单说明理由.提示:可以,构造直角三角形利用勾股定理求解.答案:如图,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即两点P1(x1,y1),P2(x2,y2)间的距离|P1P2|=?x2-x1?2+?y2-y1?2.你还能用其它方法证明这个公式吗?2.两点间距离公式的理解(1)此公式与两点的先后顺序无关,也就是说公式也可写成|P1P2|=?x2-x1?2+?y2-y1?2.(2)当直线P1P2平行于x轴时,|P1P2|=|x2-x1|.当直线P1P2平行于y轴时,|P1P2|=|y2-y1|.
(2)l的倾斜角为90°,即l平行于y轴,所以m+1=2m,得m=1.延伸探究1 本例条件不变,试求直线l的倾斜角为锐角时实数m的取值范围.解:由题意知(m"-" 1"-" 1)/(m+1"-" 2m)>0,解得1<m<2.延伸探究2 若将本例中的“N(2m,1)”改为“N(3m,2m)”,其他条件不变,结果如何?解:(1)由题意知(m"-" 1"-" 2m)/(m+1"-" 3m)=1,解得m=2.(2)由题意知m+1=3m,解得m=1/2.直线斜率的计算方法(1)判断两点的横坐标是否相等,若相等,则直线的斜率不存在.(2)若两点的横坐标不相等,则可以用斜率公式k=(y_2 "-" y_1)/(x_2 "-" x_1 )(其中x1≠x2)进行计算.金题典例 光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.解:(方法1)设Q(0,y),则由题意得kQA=-kQB.∵kQA=(1"-" y)/2,kQB=(3"-" y)/4,∴(1"-" y)/2=-(3"-" y)/4.解得y=5/3,即点Q的坐标为 0,5/3 ,∴k入=kQA=(1"-" y)/2=-1/3.(方法2)设Q(0,y),如图,点B(4,3)关于y轴的对称点为B'(-4,3), kAB'=(1"-" 3)/(2+4)=-1/3,由题意得,A、Q、B'三点共线.从而入射光线的斜率为kAQ=kAB'=-1/3.所以,有(1"-" y)/2=(1"-" 3)/(2+4),解得y=5/3,点Q的坐标为(0,5/3).
一、情境导学前面我们已经得到了两点间的距离公式,点到直线的距离公式,关于平面上的距离问题,两条直线间的距离也是值得研究的。思考1:立定跳远测量的什么距离?A.两平行线的距离 B.点到直线的距离 C. 点到点的距离二、探究新知思考2:已知两条平行直线l_1,l_2的方程,如何求l_1 〖与l〗_2间的距离?根据两条平行直线间距离的含义,在直线l_1上取任一点P(x_0,y_0 ),,点P(x_0,y_0 )到直线l_2的距离就是直线l_1与直线l_2间的距离,这样求两条平行线间的距离就转化为求点到直线的距离。两条平行直线间的距离1. 定义:夹在两平行线间的__________的长.公垂线段2. 图示: 3. 求法:转化为点到直线的距离.1.原点到直线x+2y-5=0的距离是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.选D.]