问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习抛物线及其标准方程在经历了椭圆和双曲线的学习后再学习抛物线,是在学生原有认知的基础上从几何与代数两 个角度去认识抛物线.教材在抛物线的定义这个内容的安排上是:先从直观上认识抛物线,再从画法中提炼出抛物线的几何特征,由此抽象概括出抛物线的定义,最后是抛物线定义的简单应用.这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解.坐标法的教学贯穿了整个“圆锥曲线方程”一章,是学生应重点掌握的基本数学方法 运动变化和对立统一的思想观点在这节知识中得到了突出体现,我们必须充分利用好这部分教材进行教学
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
∵在△EFP中,|EF|=2c,EF上的高为点P的纵坐标,∴S△EFP=4/3c2=12,∴c=3,即P点坐标为(5,4).由两点间的距离公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求双曲线的方程为x^2/5-y^2/4=1.5.求适合下列条件的双曲线的标准方程.(1)两个焦点的坐标分别是(-5,0),(5,0),双曲线上的点与两焦点的距离之差的绝对值等于8;(2)以椭圆x^2/8+y^2/5=1长轴的端点为焦点,且经过点(3,√10);(3)a=b,经过点(3,-1).解:(1)由双曲线的定义知,2a=8,所以a=4,又知焦点在x轴上,且c=5,所以b2=c2-a2=25-16=9,所以双曲线的标准方程为x^2/16-y^2/9=1.(2)由题意得,双曲线的焦点在x轴上,且c=2√2.设双曲线的标准方程为x^2/a^2 -y^2/b^2 =1(a>0,b>0),则有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求双曲线的标准方程为x^2/3-y^2/5=1.(3)当焦点在x轴上时,可设双曲线方程为x2-y2=a2,将点(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的双曲线的标准方程为x^2/8-y^2/8=1.当焦点在y轴上时,可设双曲线方程为y2-x2=a2,将点(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦点不可能在y轴上.综上,所求双曲线的标准方程为x^2/8-y^2/8=1.
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
二、探究新知一、点到直线的距离、两条平行直线之间的距离1.点到直线的距离已知直线l的单位方向向量为μ,A是直线l上的定点,P是直线l外一点.设(AP) ?=a,则向量(AP) ?在直线l上的投影向量(AQ) ?=(a·μ)μ.点P到直线l的距离为PQ=√(a^2 "-(" a"·" μ")" ^2 ).2.两条平行直线之间的距离求两条平行直线l,m之间的距离,可在其中一条直线l上任取一点P,则两条平行直线间的距离就等于点P到直线m的距离.点睛:点到直线的距离,即点到直线的垂线段的长度,由于直线与直线外一点确定一个平面,所以空间点到直线的距离问题可转化为空间某一个平面内点到直线的距离问题.1.已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是C1C,D1A1的中点,则点A到直线EF的距离为 . 答案: √174/6解析:如图,以点D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,则A(2,0,0),E(0,2,1),F(1,0,2),(EF) ?=(1,-2,1),
二、探究新知一、空间中点、直线和平面的向量表示1.点的位置向量在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量(OP) ?来表示.我们把向量(OP) ?称为点P的位置向量.如图.2.空间直线的向量表示式如图①,a是直线l的方向向量,在直线l上取(AB) ?=a,设P是直线l上的任意一点,则点P在直线l上的充要条件是存在实数t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如图②,取定空间中的任意一点O,可以得到点P在直线l上的充要条件是存在实数t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都称为空间直线的向量表示式.由此可知,空间任意直线由直线上一点及直线的方向向量唯一确定.1.下列说法中正确的是( )A.直线的方向向量是唯一的B.与一个平面的法向量共线的非零向量都是该平面的法向量C.直线的方向向量有两个D.平面的法向量是唯一的答案:B 解析:由平面法向量的定义可知,B项正确.
跟踪训练1在正方体ABCD-A1B1C1D1中,E为AC的中点.求证:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.证明:以D为原点,DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系.设正方体的棱长为1,则B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱长为1的正方体ABCD-A1B1C1D1中,E,F,M分别为棱AB,BC,B1B的中点.求证:D1M⊥平面EFB1.思路分析一种思路是不建系,利用基向量法证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直,从而根据线面垂直的判定定理证得结论;另一种思路是建立空间直角坐标系,通过坐标运算证明(D_1 M) ?与平面EFB1内的两个不共线向量都垂直;还可以在建系的前提下,求得平面EFB1的法向量,然后说明(D_1 M) ?与法向量共线,从而证得结论.证明:(方法1)因为E,F,M分别为棱AB,BC,B1B的中点,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因为(B_1 E) ?,(B_1 F) ?不共线,因此D1M⊥平面EFB1.
晋代孙康,家境非常贫寒。幼时酷爱学习,常常感到时间不够用。他想夜以继日攻读,可家中没有钱购买灯油。一到天黑,便没有办法读书。特别到了冬天,长夜漫漫,他经常辗转很久,难以入睡。实在没有办法,只好白天多看书,晚上睡在床上默诵。一天半夜,他从睡梦中醒来,把头侧向窗户,惊奇地发现从窗外缝中折射出一丝微微的光亮。原来,那是大雪映射过来的光亮。于是,他立刻穿好衣服,取出书籍,对着雪地的反光一看,果然字迹清楚,比一盏昏黄的小油灯要亮堂得多呢!
老师、同学们:大家上午好,今天我国旗下讲话的题目是《让书香溢满校园》。随着世界读书日,校园读书月也拉开了帷幕。同学们,谈到读书,许许多多耳熟能详的名人名言和名人故事肯定在你的耳畔回响。是啊,伟大的作家高尔基说,书籍是人类进步的阶梯;德国诗人歌德说,读一本好书就是和许多高尚的人谈话;戏剧学家莎士比亚说:书籍是全人类的营养品......的确,自古以来,伟人们不光用自己的言语,也用他们自己的行动告诉我们一个朴素的真理:读书改变命运,读书使人高尚。我国古代的《凿壁借光》、《囊萤映雪》这些反映古人刻苦读书的故事一直流传至今,教育了一代又一代人,所有这些无不告诉我们读书的重要性。“腹有诗书气自华,最是书香能致远”。阅读对人的成长影响是巨大的。一本好书往往能改变人的一生,生活中因为读了某一本书,而使人的命运有了根本性改变的比比皆是。
老师们、同学们:早上好!很高兴,今天能与大家一起来分享读书的快乐!我想先问问同学们,你是一个喜爱阅读的人吗?也许,许多同学会很自豪地说:是的,我喜爱。那么,请接受我敬佩的目光。一直以来,我都坚信书是散发着芳香的,一如大自然多姿多彩的花儿,不,更恰当地说,是胜过自然界的花儿,因为它们的芳香是充满智慧,充满思想的。所以,我特意将今天我讲话的题目定为“最是书香能致远”。当你走进书的世界里,你就如同畅游在宽阔的海洋里,那一个个质朴的文字会从厚厚的书页里跳出来,呈现给你一个新奇灵动的世界。你会欣赏到诗仙太白的飘逸与豪放,感受到李清照恍如秋水流淌的清丽婉约,更为重要的是,沉浸在芬芳隽永的书香里,聆听智者用笔敲响岁月的钟鼓,它能激起我们灵魂的火花,使狭隘的心变得宽阔,枯寂的心变得富有,甚至它还能让我们和大师巨匠成为知心朋友,进行跨越时空的畅谈沟通,使我们学会生活,学会思考,学会创造。
老师、同学们: 你们好! 4月23日,是个不同寻常的日子——世界读书日。相信,此时此刻,我们有一样的激动,一样的兴奋荡漾于心头。伴着春日的阳光,以这个不寻常的日子作为一个新的起点,相信在今后的路上,手牵着手,我们会携一缕缕书香任快乐飞扬;心挽着心,我们会自由呼吸着浓浓的书香而思绪翩然...... 同学们,你们听过《喝墨水》的故事吗?陈毅爷爷小时候由于读书太入神了,竟然拿馅饼蘸墨水吃,而且吃得津津有味,直到妈妈进屋发现他满嘴都是墨水而大声惊叫起来,他才察觉到。陈毅爷爷读书是多么痴迷啊!同学们,你们喜欢读书吗? 世纪老人冰心曾教导我们要“读书好,好读书,读好书”。读一本好书,可以使人心灵充实,明辨是非,行为举止文明得体。世界著名文学家高尔基就曾借着月光读书,在楼顶读书,在老板的皮鞭下读书。对读书的痴迷,终于把他造就为世界文学巨匠。正如高尔基自己所说:“书籍使我变成了一个幸福的人。”人要维持自己的生命
(一)在下列情况下,甲方可以解除劳动合同:1.在试用期内,发现不符合招用条件的;2.患病或非因工负伤,医疗期满后不能从事原工作也不能从事甲方另行安排的工作的;3.按照国务院《国营企业辞退违纪职工暂行规定》应予以辞退的;4.甲方宣告破产或者濒临破产处于法定整顿期间的`;5.违反劳动合同规定的,合同范本《辽宁省劳动合同范本》。(二)被依法追究刑事责任,因工或非因工死亡的,劳动合同自行解除。(三)在下列情况下,乙方可以解除劳动合同:1.经国家有关部门确认,劳动安全、卫生条件恶劣,无有效保护措施,严重危害工人身体健康的;2.甲方不能按照劳动合同规定支付劳动报酬的;3.甲方不履行劳动合同或违反国家法规、政策侵害工人合法权益的;4.经甲方同意,被招为合同制工人或参军、自费考入中等以上专业学校的。
教学过程: 孙悟空的“火眼金睛”。 ――为什么孙悟空能很快认出妖魔鬼怪?因为他看东西的时候,盯着看,仔细地看。我们来学孙悟空那样“火眼金睛”看东西好吗? ――引导幼儿定眼看物,模仿孙悟空的“火眼金睛”。 我是小悟空。 ――幼儿扮演小猴子,教师扮演孙悟空。孩子们,我得到一个消息,猴山上来了许多怪兽,我们该怎么办? ――教师带领幼儿边念“张大眼睛看,看得清,投得准”,边做投掷动作。 ――幼儿两人一组,互相分散自由地进行抛接、投掷练习。
二、教材分析1.地位与作用:随着社会的进步,生活水平的提高,健身和娱乐体育走进人们生活,得到普遍快速的发展,健身操作为一个新兴项目,以其独特的风格和魅力很快风靡全国,成为人们喜爱的一项体育活动。健身操融体操、舞蹈、武术、音乐为一体,是一种能增强体质、培养正确姿态、健美形体、发展素质、陶冶情操的体育锻炼形式。
2、发展幼儿单脚站立、单脚踢球、保持身体平衡的能力。 准备 若干张废旧报纸、几个弓形门、一些细绳。 过程 1、制造纸球幼儿自己动手,把废旧报纸搓成一个个纸球,然后用细绳捆绑一下。
甲乙双方依据中华人民共和国有关法律之相关规定,本着诚实信用,互惠互利的原则,结合双方实际,协商一致, 签订本合同,以求共同遵守. 第一条 服务内容,方式和要求 1.甲方在中华人民共和国法律允许范围内,在乙方提供的场地内为乙方提供国学培训讲座,在乙方的协助下,按时完成规划课程,使学员在国学方面有进一步的提高。 2.甲方采用分期开课的形式开展国学培训活动.其中每期大概 人。共计 期。如果在完成上述课程后,乙方需要甲方继续提供国学培训讲座,乙方应按照本合同第五条的规定向甲方支付费用. 第二条 服务期限 20___年___月___日至20___年___月___日. 第三条 服务时间 甲方所提供的每期国学培训讲座课程时间 点至 点,期间分为 课程,中间休息 分钟。第四条 双方义务 1. 甲方的义务 (1).甲方须向乙方提供书面形式的国学学习材料. (2).甲方应向乙方提供专业的国学讲师、老师、辅导员以顺利完成活动任务. (3).甲方在服务过程中不得提及任何不允许在课堂谈到的有违中华人民共和国法律的有关政治,宗教,或 其他任何违法问题. (4).甲方自行提供所提供国学讲师、老师、辅导员的交通工具. (5).甲方自行负责所提供国学讲师、老师、辅导员的安全问题.包括往返及停留在乙方场地和餐饮中的安全问题.