问题导学类比椭圆几何性质的研究,你认为应该研究双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些几何性质,如何研究这些性质1、范围利用双曲线的方程求出它的范围,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,双曲线上点的坐标( x , y )都适合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、对称性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),关于x轴、y轴和原点都是对称。x轴、y轴是双曲线的对称轴,原点是对称中心,又叫做双曲线的中心。3、顶点(1)双曲线与对称轴的交点,叫做双曲线的顶点 .顶点是A_1 (-a,0)、A_2 (a,0),只有两个。(2)如图,线段A_1 A_2 叫做双曲线的实轴,它的长为2a,a叫做实半轴长;线段B_1 B_2 叫做双曲线的虚轴,它的长为2b,b叫做双曲线的虚半轴长。(3)实轴与虚轴等长的双曲线叫等轴双曲线4、渐近线(1)双曲线x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的渐近线方程为:y=±b/a x(2)利用渐近线可以较准确的画出双曲线的草图
二、直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个切点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.因此直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.二、典例解析例5.过抛物线焦点F的直线交抛物线于A、B两点,通过点A和抛物线顶点的直线交抛物线的准线于点D,求证:直线DB平行于抛物线的对称轴.【分析】设抛物线的标准方程为:y2=2px(p>0).设A(x1,y1),B(x2,y2).直线OA的方程为: = = ,可得yD= .设直线AB的方程为:my=x﹣ ,与抛物线的方程联立化为y2﹣2pm﹣p2=0,
二、典例解析例4.如图,双曲线型冷却塔的外形,是双曲线的一部分,已知塔的总高度为137.5m,塔顶直径为90m,塔的最小直径(喉部直径)为60m,喉部标高112.5m,试建立适当的坐标系,求出此双曲线的标准方程(精确到1m)解:设双曲线的标准方程为 ,如图所示:为喉部直径,故 ,故双曲线方程为 .而 的横坐标为塔顶直径的一半即 ,其纵坐标为塔的总高度与喉部标高的差即 ,故 ,故 ,所以 ,故双曲线方程为 .例5.已知点 到定点 的距离和它到定直线l: 的距离的比是 ,则点 的轨迹方程为?解:设点 ,由题知, ,即 .整理得: .请你将例5与椭圆一节中的例6比较,你有什么发现?例6、 过双曲线 的右焦点F2,倾斜角为30度的直线交双曲线于A,B两点,求|AB|.分析:求弦长问题有两种方法:法一:如果交点坐标易求,可直接用两点间距离公式代入求弦长;法二:但有时为了简化计算,常设而不求,运用韦达定理来处理.解:由双曲线的方程得,两焦点分别为F1(-3,0),F2(3,0).因为直线AB的倾斜角是30°,且直线经过右焦点F2,所以,直线AB的方程为
1.判断 (1)椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的长轴长是a. ( )(2)若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x^2/25+y^2/16=1. ( )(3)设F为椭圆x^2/a^2 +y^2/b^2 =1(a>b>0)的一个焦点,M为其上任一点,则|MF|的最大值为a+c(c为椭圆的半焦距). ( )答案:(1)× (2)× (3)√ 2.已知椭圆C:x^2/a^2 +y^2/4=1的一个焦点为(2,0),则C的离心率为( )A.1/3 B.1/2 C.√2/2 D.(2√2)/3解析:∵a2=4+22=8,∴a=2√2.∴e=c/a=2/(2√2)=√2/2.故选C.答案:C 三、典例解析例1已知椭圆C1:x^2/100+y^2/64=1,设椭圆C2与椭圆C1的长轴长、短轴长分别相等,且椭圆C2的焦点在y轴上.(1)求椭圆C1的半长轴长、半短轴长、焦点坐标及离心率;(2)写出椭圆C2的方程,并研究其性质.解:(1)由椭圆C1:x^2/100+y^2/64=1,可得其半长轴长为10,半短轴长为8,焦点坐标为(6,0),(-6,0),离心率e=3/5.(2)椭圆C2:y^2/100+x^2/64=1.性质如下:①范围:-8≤x≤8且-10≤y≤10;②对称性:关于x轴、y轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0);④焦点:(0,6),(0,-6);⑤离心率:e=3/5.
问题导学类比用方程研究椭圆双曲线几何性质的过程与方法,y2 = 2px (p>0)你认为应研究抛物线的哪些几何性质,如何研究这些性质?1. 范围抛物线 y2 = 2px (p>0) 在 y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标 (x, y) 的横坐标满足不等式 x ≥ 0;当x 的值增大时,|y| 也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.2. 对称性观察图象,不难发现,抛物线 y2 = 2px (p>0)关于 x 轴对称,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴. 3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点 (0, 0) .4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率. 用 e 表示,e = 1.探究如果抛物线的标准方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④
二、典例解析例5. 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面)的一部分。过对称轴的截口 ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F_1上,片门位另一个焦点F_2上,由椭圆一个焦点F_1 发出的光线,经过旋转椭圆面反射后集中到另一个椭圆焦点F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,试建立适当的平面直角坐标系,求截口ABC所在的椭圆方程(精确到0.1cm)典例解析解:建立如图所示的平面直角坐标系,设所求椭圆方程为x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有椭圆的性质 , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求椭圆方程为x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用椭圆的几何性质求标准方程的思路1.利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是:(1)确定焦点位置;(2)设出相应椭圆的标准方程(对于焦点位置不确定的椭圆可能有两种标准方程);(3)根据已知条件构造关于参数的关系式,利用方程(组)求参数,列方程(组)时常用的关系式有b2=a2-c2等.
1、结合具体生活场景,能运用所学的乘法口诀解决简单的实际问题,通过图与式的对应,进一步理解乘法的意义。 2、能熟练运用口诀进行计算,提高灵活运用口诀解决实际问题的能力。 3、体会数学与实际生活的联系,培养用数学的意识,体验口诀在解决问题中的作用。 运用所学乘法解决简单的实际问题。 结合实际情景理解乘法的意义。 1、口算: 5×2=10 6×2=12 8×5=40 2×7=14 5×9=45 3×5=15 2×6=12 2×9=18 4×2=8 2、谈话导入:在前面的学习中,我们认识了乘法,而且还学习了2和5的乘法口诀。这节课,老师想请同学们用这些跟乘法有关的知识来帮助老师一起解决生活中遇到的问题,一起来看一看吧。快乐休息时间到了,学校的大操场突然热闹起来了,你们一定非常喜欢课件活动吧!看,操场上同学们有的在玩老鹰捉小鸡的游戏,有的在进行乒乓球比赛,有的在跳绳,还有的在踢毽子……真热闹啊!
我说课的内容是人教版小学数学四年级上册第一单元第21页的内容——《亿以上数的认识》。下面我将从说教材、说目标、说教法和学法、说教学程序、课堂回眸五个方面进行阐述。一、说教材《亿以上数的认识》,是在学生认识和掌握万以内数的读法和写法基础上学习的。也是为进一步学习亿以上数的写法打基础。生活中大数广泛存在,亿以上数的认识既是万以内数的认识的巩固和拓展,也是学生必须掌握的最基本的数学基础之一。通过地球不堪人口之重负的拟人素材,生动地引入世界人口总数,让学生感受大数、学习亿以上数的读法的同时了解到地球上人口太多了,如不控制将要威胁到人类的生存环境,渗透有关人口知识和环境保护教育。二、说目标(基于对教材以上的认识及课程标准的要求,结合学生的年龄特征,将本节课的教学目标为:)
2、十进制计数法(1)、师提问:“同学们,我们在前几节课已经学习了到万级为止的数,但是,还有比亿更大的数存在着,(出示数位顺序表):引导学生利用已有的知识进行类推,将已学过的亿以内数位顺序表扩展到“千亿”。教师在计数器上现场贴上亿级的数位。(教师向学生说明:还有比千亿更大的数,由于不常用,暂时不学,因此在数为顺序表后面用“…”,表示后面还有其他数位。)(2)、教师提问:“那么,我们已经学习了哪些计数单位呢?”(3)、小组讨论:“每相邻的两个计数单位之间的进率是多少?”请同学们自己得出结论:每相邻的两个计数单位之间的进率都是十。最后,教师给出“十进制计数法”的名称,在黑板上板书。(三)、课堂总结1、教师:“同学们,今天我们一起学习了?”教师请同学们接下去说完整:“自然数和十进制计数法。”
二、教学目标:1、使学生能够运用“四舍”、“五入”的试商方法,正确地计算除数是两位数、商是一位数的笔算除法.初步掌握试商调商的方法。2、培养学生估算能力,培养学生自主观察、分析、归纳及综合运用知识的能力。3、激发学生自己探求知识的欲望,培养学生自主学习的精神,在学生讨论和交流中,促进学生之间在交流中合作精神,激发学生对数学学习的兴趣.三.教学重点:掌握用四舍五入法试商的方法并熟练地试商教学难点:掌握四舍五入试商的方法四、说教法、学法。著名的教育家叶圣陶说过:教学有法,教无定法,贵在得法。本节课我利用情境、生活经验等多种方法,使学生变苦学为乐学。学生是学习是主体,学生的参与状态、参与度是决定教学效果的重要因素。引导学生“观察、对比、总结等多种方式进行探究性学习活动。
二、数数活动,认识“十万”。1、用多媒体出示课本第2页第一幅图,让学生看图数一数共有多少个?再让学生在计数器上拨一拨,并写出这个数。(说明:第一个数一数活动是使学生回顾万以内数的认识,引出“个”“十”“百”“千”的数学模型小方块和计数器。)2、用多媒体出示第二幅图,(学生:哇,好多啊!)师:你能数一数一共有多少个吗?(大部分学生会感到困难)3、运用第一个数数活动中:一个大正方体是“一千”的数学模型,指导学生用100张“一千”的卡片来代替摆一摆、数一数。4、全班交流,逐步引导出先数出一万,然后一万一万来数的方法。(说明:在课堂教学中不可能直接让学生数这么多的小方块,所以我让学生制作了100张“一千”的卡片代替来完成这第二个数一数活动,从而让学生有了“10个一万是十万”的直观体验!)
本单元教学内容是亿以内数的读法和写法.教材是在学生学习了万以内数的读法和写法,已经掌握了“个”、“十”、“百”、“千”这几个计数单位,并且会正确地读写万以内数的基础上,把计数单位扩展到“亿”,再分别学习万级数的读法和含有两级的数的读法,万级数的写法和含有两级数的写法,最后学习比较数的大小,把整万的数改写成用万作单位的数,以及用“四舍五入”法把一个亿以内的数改写成用万作单位的近似数.通过本单元的教学,使学生能够按照四位一级的计数特点正确读、写亿以内的数.帮助学生建立较完整的计数知识体系.为进一步学习亿以内加法和减法,乘数和除数是三位数的乘法和除法打下基础.本单元教学重点是万级数的读法和写法,培养学生运用迁移、类推的方法获取新知,并进一步培养学生的分析、综合能力.
⑴、理解小数乘法交换律、结合律和分配律的意义,能运用运算定律进行小数的计算简便。⑵、经历发现归纳小数乘法交换律、结合律、分配律的全过程。学习“猜测—验证”的科学思维方式,提高类比、分析、概括的能力。⑶、在合作交流的学习活动中,提高人际交往能力。4、教学重点、难点从猜测—验证中归纳乘法交换律、结合律和分配律。二、教法和学法1、充分发挥学生的主体作用,在教学中注意让学生自主探索、发现规律、理解规律,通过猜测—验证,引导启发学生发现规律。引导学生积极、主动地参与到知识的形成过程中去。2、自始至终注意培养学生观察、比较、抽象概括能力,教给学生观察、比较、抽象概括的方法。在教学中不仅引导学生有序地观察比较,还充分运用小组合作讨论的手段,进行小组合作讨论,各抒己见,取长补短,在观察到的感性材料的基础上加以抽象概括,形成结论。
《较复杂的小数乘法》是第九册第一单元《小数的乘法和除法》的第三节。本 节课的教学内容是教科书第3页的例3、例4。这一教材是在学生学习了小数乘法的意义(小数乘以整数、一个数乘以小数)、小数乘法的计算法则以及小数点位置 移动引起小数大小的变化的基础上进行教学的,它是小数乘法计算法则的引伸和补充,同时也是学生今后进一步学习小数四则混合运算的基础。本节课 的教学目的是:1、使学生进一步掌握小数乘法的计算法则,懂得在点积的小数点时,乘得的积的小数位数不够的,要在前面用0补足;2、使学生初步掌握“当乘 数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大”;3、培养学生的计算能力,自学能力和概括能力。本节课的教学重点是:让学生掌握在定积的小数 时,位数不够的会用0补足。
在学习本课内容以前,学生已经系统地学习了整数四则混合运算和小数四则计算,为本节课内容的学习打下了基础,由于小数四则混合运算的运算顺序同整数四则混合运算的运算顺序完全一样,针对这一点,本课教学确定的教学目的是使学生熟记小数四则混合运算顺序,提高计算能力。使学生熟练地掌握小数四则混合运算的运算顺序,正确、迅速地进行小数四则混合式题的运算,是本课的教学重点。教学难点是:1.能否正确把握运算顺序。2.能否正确标明根据以上教学目的,为了更好地突出重点,突破难点,在教学中遵循大纲的要求,从简单入手。例1是最简单的两步计算题,让学生熟悉一下运算顺序。再过渡到较复杂的问题。例2是三步计算带小括号的较复杂的四则混算题,在运算过程中出现了除不尽的情况,应说明计算过程中,当除得的商超过两位小数时,一般只需保留两位小数,再进行计算。最后进入到教学重点、难点阶段。
1、说内容:百分数的意义和写法是人教版义务教育课程标准实验教科书六年级数学上册第五单元的内容。2、说教材:这部分内容是在学生学过整数、小数特别是分数的意义和应用的基础上进行教学的。百分数的意义和写法是本单元的基础,学生只有理解了百分数的意义,才能正确地运用它解决实际问题。二、学情分析:百分数对于六年级学生来说并不陌生,他们有的可能已经认识百分数,并且能够正确读出百分数,但大多数学生对百分数意义的理解还不十分准确,学生极易把百分数等同于分母是100的一般分数。因此教学中如何激活学生的相关经验,及时引导学生理解百分数和分数的联系与区别,让学生完成百分数意义的建构,显得尤为重要。三、教学目标:1、知识与技能:让学生经历从实际问题中抽象出百分数的过程,体会引入百分数的必要性,理解百分数的意义,会正确读写百分数。
教材分析:例2以学校兴趣小组为题材,引出稍复杂的已知一个数的几分之几是多少,求这个数的实际问题。用算术方法解决这样的实际问题,不仅需要逆向思考,还要把“比一个数多它的几分之几”,转化为“是一个数的几分之几”,比较抽象,思维难度大。用方程解,可以列成形如 的方程,也可以列成形如 的方程,前者仍然要经历从“多几分之几”到“是几分之几”的转化,实际上是方程的形式,算术的思路。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学难点:分析题中的数量关系。学情分析:由于小学生目前尚未接触到比较复杂的,用算术方法很难解决的实际问题,所以对方程解法的优越认识不足。一些学生觉得用方程解需要写设句,比较麻烦,因此喜欢用算术解法。对此,教师一方面应肯定学生自己想到的正确解法,另一方面又要因势利导,从进一步学习的需要与方程解法的特点等角度,使学生初步了解学习列方程解决问题的重要性。从而提高学习用方程解决问题的自觉性和积极性。
(二)自主探究,学习新知。(1)认识“11”。让学生说说身边的“11”,接着数出11根小棒。根据学生已有的知识和经验,猜想学生能顺利地数出;再接着让学生另外数出11根小棒,动手摆一摆,探讨一下还有没有别的更好的摆法。比较各种摆法的不同点。[在学习新知,突破重难点这一环节,让学生动口说一说,动手摆一摆,用眼观察,用脑思考,使学生通过具体实物比较各种摆法,让学生借助实物感知10根一捆的原因,建立以一代十的表象认知。](2)学习例2中的“15、20”,加深理解组成。让学生数出15根小棒,动手摆一摆,捆一捆。引导学生运用上面发现的容易看出数量的方法,摆一摆,捆一捆,同桌交流,互相猜猜,根据实物说出数量,根据实物说数的组成,再倒过来根据组成说出这个数。如:“15是由1个十和5个一组成,1个十和5个一组成15。”同样,让学生动手摆摆,捆捆,看看,说说,学习“20”。
一、创造性地使用教材。上课前,我就布置了学生收集相关的“数”的产生的资料,初步感知“数”的产生历史及变化过程;上课后,我将数位的产生融入“数的产生”这样大的背景中,使学生感受数学王国的博大与神奇。二、把学习的主动权利教给学生,放手让学生去探索、去发现,给予学生思维的空间。如:我在教学“探索十进制计数法”一节时,给学生提供一张不完整的数位顺序表,让学生填写完整并说出依据。学生通过自己动脑思考、动手填写,就会发现“相邻两计数单位间的进率都是十”,既而明白:相邻两单位进率是十的计数法就是十进制计数法,课堂效果十分明显。三、困惑与反思:本节课对十进制计数法教学法的设计虽然取得了较明显的效果,但对于“数位”、“位数”、“计数单位”这些概念该不该讲?怎样讲才能让学生理解得更透彻,我感到困惑。
(三)通过观察,找出规律教师可以这样设计,用计数器演示,个级的各个数位,然后让学生观察找出万级的计数单位,学生很快从中找出万级的计数单位,知道万位、十万位、百万位和千万位,这时为了加深对本节课内容的理解,可以通学习例1和例2的内容。学习例1,教师出示例题内容:470000、3080000、40500000。为了让学生直观地看出以上数所占的数位,可以用计数来帮助,把相应数位相互对齐。学生经过观察可能发现其中的道理,以470000为例,4对应十万位、7对应万位、后面全部是0,学生很快读出这个数,读作47万。用相似的方法来学习其它内容,学生会总结出这些数的读法。接着学习例2,情况和教学内容虽然稍有不同,但经过教师适当地引导,学生肯定能够掌握,由于方法相似,在这里就不展开讨论。通过以上两个例题的学习,学生应该明白了亿以内数的读法了,不过由于0在各种情况下出现,其也有不同的读法,教师要引导学生弄清在何种情况下如何读中间有0或未尾有0的数,这是本课学习的重点与难点,必须让学生掌握。