我们要坚持贯彻民主集中制原则,加强班子的团结,将民建XX市委会建设成为政治坚定、充满活力、具有较强凝聚力和战斗力的领导集体;要践行“四新”“三好”总要求,坚持思想建会、人才强会、特色立会、制度治会,着力提升政治把握能力、参政议政能力、组织协调能力、合作共事能力和解决自身问题能力,努力建设一支奋发向上的高素质会员队伍和一批严肃活泼的基层组织,增强会组织的活力和执行力。 X届市委会将一如既往围绕主业履职尽责,提升“奋发有为”的优良品质,在广泛凝聚人心上取得新成绩。
各位新同事,你们的青春遇上了最好的事业,你们的工作与人民幸福、社会进步息息相关。当你选择了成为一名建筑人,就是选择了一份不以山海为远、不以日月为限的恢弘事业,逢山开道、遇水架桥,你们将用步伐丈量九洲经纬,你们的努力将影响万千家庭的幸福、国家的发展和社会的进步。虽然,建筑业的特性让你注定会要面对紧张忙碌的工作节奏、离开家乡的孤独寂寥,但是,也请记住这个身份带来的荣耀:等到万家灯火明,路连千万里,你们的心血都将凝结在这精致华美的建筑之上,你们的深情将凝聚在这片土地漫长深厚的血脉之中
一、大胆解放思想,坚定不移地落实五大发展理念思想观念的变革,是一个地区、一项事业兴旺发达的重要决定因素。观念不改变,就难以适应不断发展变化的形势。解放思想永无止境,今天思想解放,不代表明天就思想解放,必须以永不僵化、永不满足、永不懈怠的进取精神大力推进思想解放。从历史上看,东北地区特别是X作为国家重要的工业基地,为支撑新中国工业架构体系作出了突出贡献,有力助推了我国社会主义现代化建设和改革开放进程
思想观念的变革,是一个地区、一项事业兴旺发达的重要决定因素。观念不改变,就难以适应不断发展变化的形势。解放思想永无止境,今天思想解放,不代表明天就思想解放,必须以永不僵化、永不满足、永不懈怠的进取精神大力推进思想解放。从历史上看,东北地区特别是X作为国家重要的工业基地,为支撑新中国工业架构体系作出了突出贡献,有力助推了我国社会主义现代化建设和改革开放进程
A.出示象脚鼓点声,引发学生读的欲望,先读,感到“快乐、好玩”。B.创设情境:同学们,这是一个泼水的广场,来把你们的桶提起来,盆端起来,瓢拿起来, 看一看,你的好朋友在哪里,快去泼吧。学生下位,互相追赶,体验泼水节的快乐。C.读出体验
同志们:人勤春来早,奋进正当时。前天是立春,为二十四节气之首。立春是万物起始、一切更生之义,意味着新的一个轮回已开启。今天区委、区政府将一季度经济工作、农村工作等合并召开,进行研究部署,主要考虑这样统筹安排有利于节约时间、提高效率,让大家把更多的时间和精力投入到抓工作落实上。会议的主要目的是:贯彻落实中央、全省、全市经济工作会议精神,动员各级各部门擂起奋进催征、起步快跑的战鼓,奏响团结奋斗、争创一流的强音,以开局即决战、起步即冲剌的昂扬势头,变快走为快跑,奋勇攻坚一季度经济工作各项重点任务,确保实现高起步、开门红,为完成全年经济社会发展目标任务打下坚实基础。下面,就做好一季度经济工作,我讲几点意见。
同志们:新春伊始,万象更新。我代表局班子给大家拜个晚年,祝大家在新的一年里,身体健康、工作顺利、阖家幸福。节后上班第一天召开全体干部会议,基本上已经成为咱们局的惯例。它既是集中归位、调整状态的收心会,又是打气鼓劲开始工作的动员会。经过了春节假期,大家的身心得到了休息、休整,希望大家能以信心百倍、充满活力的状态迅速投入到新年的工作中,抢抓时间,务实创新,扎实工作,为今年各项工作任务开好局、起好步。下面,我讲三点意见。一、收假收心,立即进入工作状态XXX年我们安排了多项重点工作,任务比较繁重,要求大家马上从假期的气氛和状态里走出来,按照已经确定的思路、目标、方案、路径、方法、时限,立即启动各项工作。在这里,我想给大家鼓好“四股劲”:一是拼劲。困难面前勇者胜。年我们要想取得优异的成绩,必须发扬“勇往直前、顽强拼搏”的精神,稍有松动,就可能导致进度滞后、标准降低。所以,一定要有“拼命三郎”的精神工作态度上要不怕千辛万苦,要锲而不舍,工作方法上要千方百计,要“挤”要“钻”,确保把目标变为现实。
同学们,各位老师、各位家长:大家中午好!在这万象更新,万物复苏的美好春天,我们今天隆重集会,举行2023届高三同学成人仪式,这就意味着我们各位同学又迎来了人生又一个里程碑,我们经历的入学仪式、成长仪式、青春仪式,每一次都是成长。今天成人仪式是在所有同学、所有高三老师以及部分受邀家长的见证下举行的。成人,更有着非同寻常的意义,前面的三个仪式是在孩提时期,成人则表明我们长大成人了,我们享有宪法所赋予每一位公民的权力和义务,在此向所有同学跨入成人行列表示诚挚的祝贺!成人的我,与孩提时代的我,究竟有什么区别,我们思考过没有?在这里,我跟同学们分享一点我的认识:从人生一辈子来说,希望每一位同学有担当,懂感恩,知奋进,永远做一个积极向上有精神有思想的明白人,我们这一届高三的精神是比志气、强骨气、拼勇气、定争气,在过去的几个月里,已经涌现出高三精神“践行之星”,他们是:……
二是制度执行不到位,三是工作作风浮躁。公司安全总监主观上以暑假期间维稳减小社会影响为由未及时上报,客观上加大了问题的严重性。这些隐患问题在刚才的竞赛中也有提到。三条人命就这样没了?这是意外吗?我觉得不是,如果作业职工能按章操作,相关部门安规监督,这样的事故是完全可以避免的。由此说来,提升安全健康意识和落实安全健康行动是必须的、必要的,否则发生事故就是必然的。所以各位,要引以为戒呀,要长敲警钟啊,切不可麻痹大意、因小失大,造成无法弥补的损失。职工朋友们,竞赛结束了,但是我们的工作还在继续,我们的“战斗”仍在继续。我们要以本次XX杯知识竞赛为起点,继续做好XXXX,继续打好“二次创业”的接力战,为企业安全健康发展立新功、创新业、开新路。
一、教材分析《我们神圣的国土》是统编教材小学《道德与法治》五年级上册第三单元第6课,共有三个话题,本节课学习的是第一个话题《辽阔的国土》,主要是引导学生知道我国国土面积、疆域及行政区划,知道台湾是我国领土不可分割的一部分,旨在引导学生感受祖国的幅员辽阔,每一寸土地都神圣不可侵犯。二、学情分析祖国是学生生活领域的一个重要组成部分,对于五年级学生来说,我国的国土距离学生既近又远,毕竟学生年龄小,大部分生活的范围仅限于出生地,对于国土的了解有限。因此,要通过有效的教学,帮助引导学生了解我国国土的辽阔和神圣不可侵犯。三、教学目标与重难点基于教材、学情的分析,以及对小学道德与法治课程的理解,我确定了本节课的教学目标与重难点。教学目标我确定了三个。1. 知道中国国土面积、疆域及行政区划,感受祖国的幅员辽阔。2. 提高读图、识图能力和主动探究知识的能力。3. 知道台湾是我国领土不可分割的一部分。教学重点是:了解我国的国土面积、疆域及行政区划的相关知识,感受祖国幅员辽阔。难点是:理解台湾自以来是我国领土不可分割的一部分。
六、说活动设计一节班会四十分钟,到底能给学生怎样的教育,能带给他们多少深远的影响。在班会的设计上,我主要突出以下几个特点: (一)巧定主题。我紧扣爱国主题,紧密联系学生生活实际,以“国庆六十年阅兵庆典”为切入点,以“爱国”为主线,选择典型事例,对不同时期的中国有一定的展示,加深学生对祖国的了解。(二)层次清晰。从五个方面循序渐进地引领学生对中国加以认识、理解、感悟,最后激发他们的爱国情怀,各环节推进自然。 (三)情感渗透。用《昨天与今天》相关图片震动学生的心灵,让学生感受到我们的祖国妈妈的贫穷落后的状态,又用一系列的建国六十五年来取得的巨大变化的图片,让学生感受到祖国的现在。使他们知道,不仅要爱富裕的祖国妈妈,也要爱贫穷中的祖国妈妈。
“我们的人民热爱生活,期盼有更好的教育、更稳定的工作、更满意的收入、更可靠的社会保障、更高水平的医疗卫生服务、更舒适的居住条件、更优美的环境,期盼着孩子们能成长得更好、工作得更好、生活得更好。人民对美好生活的向往,就是我们的奋斗目标。”四、中国梦这是一个绽放梦想的时代,每个人都是梦想家。中国梦从我的梦开始。同学们,在每一个阶段尽情放飞你的梦想,让他带领你前行,照亮你的人生。坚持梦想的过程,是一个不断超越自我、实现自我的过程。抬头看着你的梦想,脚踏实地的努力每天都离梦想更近一步。中国梦,承载着中国民主、富强、公正、和谐、自由的最基本价值观、承载着自强不息的中国精神。中国梦需要我们每一个人付出自己的努力,共筑梦想,让梦想照耀中国,善良世界。
《下雪了》是小班幼儿手册上的一个童话。一年四季只有在寒冷的冬天才能见到自然界中最美丽的雪景。喜爱洁白的小雪花是幼儿的天性。由于小班幼儿对小雪花的知识了解的不多,而且有很强的求知欲,渴望了解雪花的特征,作为教师必须抓住这自然景观,培养幼儿探索精神,激发对大自然的热爱,因此我设计了这节《下雪了》,通过观察、听童话,让幼儿充分感知雪的特征,体验雪的乐趣,还培养了幼儿坚强勇敢的意志品质。1、知识目标:通过图片、影像资料感受雪后美景,丰富幼儿对雪的认识。2、情感目标:激发学生对雪的向往,对大自然的热爱之情。3、发展目标:培养和发展想象力与探索能力。
知识和技能 1.了解人类活动对生物圈影响的几个方面的实例。 2.掌握环境污染的产生及危害。 3.举例说明人类对生物圈中资源的合理利用。 过程与方法 1.能初步学会收集资料,养成良好的学习习惯,能够运用所学知识、技能分析和解决一些身边的生物学问题的能力。 2.培养学生初步具有近一步获取课本以外的生物学信息的能力。 情感、态度与价值观 1.让学生认识到环境保护的重要性,能够以科学的态度去认识生命世界,认同人类活动对生物圈的影响,形成环境保护意识,并使这种意识转变成真正的行动,培养学生保护环境的意识,增强爱国主义思想1.认同人类活动对生物圈的影响,形成环境保护意识 2.做到从实际行动出发保护环境1.采取让学生收集资料,整理资料,解疑
写作背景这首诗写于普希金被沙皇流放的日子里,是以赠诗的形式写在他的邻居奥希泊娃的女儿叶甫勃拉克西亚·尼古拉耶夫娜·伏里夫纪念册上的。那里俄国革命正如火如荼,诗人却被迫与世隔绝。在这样的处境下,诗人却没有丧失希望与斗志,他热爱生活,执着地追求理想,相信光明必来,正义必胜。(三)、问题探究1、“假如生活欺骗了你”指的是什么?指在生活中因遭遇艰难困苦甚至不幸而身处逆境。作者写这首诗时正被流放,是自己真实生活的写照。2、诗人在诗中阐明了怎样的人生态度?请结合你感受最深的诗句说说你曾有过的体验。诗中阐明了这样一种积极乐观的人生态度:当生活欺骗了你时,不要悲伤,不要心急;在苦恼的时候要善于忍耐,一切都会过去,我们一定要永葆积极乐观的心态;生活中不可能没有痛苦与悲伤,欢乐不会永远被忧伤所掩盖,快乐的日子终会到来。
方法总结:当某一事件A发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P(A)=事件A所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,自由转动转盘,停止后指针落在B区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A、B、C、D四个扇形区域,∴圆形转盘被等分成10份,其中B区域占2份,∴P(落在B区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率P(A)= 2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题
1.进一步理解概率的意义并掌握计算事件发生概率的方法;(重点)2.了解事件发生的等可能性及游戏规则的公平性.(难点)一、情境导入一个箱子中放有红、黄、黑三个小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,那么这个游戏是否公平?二、合作探究探究点一:与摸球有关的等可能事件的概率【类型一】 摸球问题一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A.23 B.12 C.13 D.16解析:根据题意可得不透明的袋子里装有6个乒乓球,其中2个黄色的,任意摸出1个,则P(摸到黄色乒乓球)=26=13.故选C.方法总结:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.【类型二】 与代数知识相关的问题已知m为-9,-6,-5,-3,-2,2,3,5,6,9中随机取的一个数,则m4>100的概率为()A.15 B.310 C.12 D.35
证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.本节课由于采用了动手操作以及讨论交流等教学方法,有效地增强了学生的感性认识,提高了学生对新知识的理解与感悟,因而本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的.不足之处是少数学生对等腰三角形的“三线合一”性质理解不透彻,还需要在今后的教学和作业中进一步巩固和提高
解析:(1)连接BI,根据I是△ABC的内心,得出∠1=∠2,∠3=∠4,再根据∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可证出IE=BE;(2)由三角形的内心,得到角平分线,根据等腰三角形的性质得到边相等,由等量代换得到四条边都相等,推出四边形是菱形.解:(1)BE=IE.理由如下:如图①,连接BI,∵I是△ABC的内心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四边形BECI是菱形.证明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的内心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)证得IE=BE,∴BE=CE=BI=IC,∴四边形BECI是菱形.方法总结:解决本题要掌握三角形的内心的性质,以及圆周角定理.
解析:(1)由切线的性质得AB⊥BF,因为CD⊥AB,所以CD∥BF,由平行线的性质得∠ADC=∠F,由圆周角定理的推论得∠ABC=∠ADC,于是证得∠ABC=∠F;(2)连接BD.由直径所对的圆周角是直角得∠ADB=90°,因为∠ABF=90°,然后运用解直角三角形解答.(1)证明:∵BF为⊙O的切线,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半径为203.方法总结:运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.